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Eigenvalues asymptotics for Stark operators

Hatem Najar and Monia Raissi

Communicated by Yury Shestopalov

Abstract. We give the eigenvalues asymptotics for the Stark operator of the form−∆+Fx,
F > 0 on L2([0, d]). This is given in the case when F is small enough or sufficiently
large. We impose various boundary conditions. The proof is based on the asymptotics of
the specialized Airy functions.
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1 Introduction and results

Stark effect means the shifts viewed in atomic emission spectra after placing the
particle in a constant electric field of strength F . In the non-relativistic quantum
theory, this Stark effect is usually modeled by an Hamiltonian operator that (in
appropriately scaled units and with the atomic units 2m = h = q = 1 to simplify
the equation) has the form

H(F ) = −∆ + V (x) + Fx. (1)

Hamiltonians that are parameterized by operators of the form (1) have been inten-
sively studied in the last five decades [4, 5, 8, 9, 11] and references therein.
Asymptotic properties of eigenvalues is one of the most studied problems in the
spectral theory. Unfortunately it is not possible to get simple analytic and exact
expressions for solutions of the eigenvalue equation for the Stark operators.
The problem was first analyzed by the use of perturbation theory for |F | small,
and spectral properties of H(F ) are deduced from those of H0 = −∆ + V (x)
[5, 11]. A comparison was also made with other approximation techniques, such
as WKB and perturbation theory methods [7]. The other major approach is based
on semiclassical methods where the Hamiltonian is parameterized by the strength
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of the external field.

In this note we give the asymptotics of the eigenvalues when the operator (1) is
restricted to a finite interval. We give the result for two different type of bound-
aries conditions (Dirichlet and Dirichlet-Neumann). As we already mentioned,
most earlier work, treats only the case F → 0 and it is based on the comparison
between Stark eigenvalues and free Laplacian eigenvalues. In our approach the
result is based on the asymptotics of the Airy functions. Here one finds the expres-
sion of the eigenvalues energies directly and in a very simple way. Moreover this
method can treat both the cases of a weak and a strong electric filed.

1.1 The model and the main result

We consider the Stark operator

H = − d2

dx2 + Fx, F > 0. (2)

We work in the Hilbert space L2(0, d) equipped with the scalar product

〈f, g〉 =
∫ d

0
f(x)g(x)dx,∀f, g ∈ L2([0, d]).

The maximal domain in whichH is well defined as a self-adjoint operator is denote
by Dmax [6]. Consider the Dirichlet boundary condition domain

DD = {ψ ∈ Dmax and ψ(0) = ψ(d) = 0}.

and the Dirichlet-Neumann boundary condition

DN = {ψ ∈ Dmax and ψ(0) = ψ′(d) = 0}.

We denote by HD and HDN the operator H with domain DD and DN , respec-
tively. HD is associated to the infinite well potential. Indeed in this case (2)
corresponds to (1), with V (x) = 0 if x ∈ [0, d] and V (x) = +∞ otherwise.

Theorem 1.1. Let HD (respectively HN ) has a sequence of discrete eigenvalues,
and let us denote the n-th eigenvalue by λDn (respectively HDN ). Then, they have
the following asymptotics

(i) When, F → 0,

a.

λDn =

(
nπ +

√
n2π2 + d3F

2d

)2

+ o(F ), n ∈ Z∗+. (3)
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b.

λDNn+1 =

(2n+ 1)π2 +
√

(2n+ 1)2(π2 )
2 + d3F

2d

2

+o(F ); n ∈ Z+. (4)

(ii) When, F → +∞,

a.
λDn = −αnF

2
3 , n ∈ Z∗+, (5)

where αn is the n-th negative zero of the Airy function Ai.
b.

λDN = −α′nF
2
3 , n ∈ Z∗+, (6)

where α′n is the n-th negative zero of the derivative of the Airy function
Ai′.

Remark 1.2. For F = 0, in (3) and (4) we get the known eigenvalues of the free
Laplacian.

The proof of the last theorem is the subject of the following section.

2 The proof of Theorem 1.1

2.1 Form of solutions

The spectral equation associated with the Stark operator is given by

−d
2ψ

dx2 (x) + Fxψ(x) = Eψ(x). (7)

Using the change of variable

ξ =
E

Fρ
; ρ = F−

1
3 , x = ρz,

we get the new equation
ψ′′(z) = (z − ξ)ψ(z). (8)

The solutions of equation (8) are two linearly independent Airy functions Ai(z −
ξ) and Bi(z − ξ). The eigenfunctions associated with the equation (8) are given
as a superposition of two linearly independent functions and have the form

φ(z) = A ·Ai(z − ξ) +B ·Bi(z − ξ); ΦΦΦ =

(
A

B

)
∈ C2. (9)
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Figure 1. Airy functions and the corresponding derivatives.

Remark 2.1. If we consider a half line domain, i.e, with a potential V (x) = 0 for
x ≥ 0 and V (x) = +∞ for x < 0 then in (9) we get just Ai(·), and then the
quantized energies are given in terms of zeros of the well-behaved Airy functions
Ai(·). So, the eigenvalues of the operator are given by λDn = F

2
3 ξn, where −ξn is

the n-th zero of Ai.

The equation (9) in the x variable is written as

φ(x) = A ·Ai(F
1
3 (x− E

F
)) +B ·Bi(F

1
3 (x− E

F
)). (10)

We denote the spectral parameter by λ and set:

uλ.(z) := Ai

(
F 1/3

(
x− λ.

F

))
; vλ.(x) := Bi

(
F 1/3

(
x− λ.

F

))
. (11)

We will calculate the eigenvalues of the operators HD and HDN .

2.2 The Dirichlet boundary conditions

The Dirichlet boundary conditions at points 0 and d yield{
AuλD(0) +BvλD(0) = 0
AuλD(d) +BvλD(d) = 0,

with A,B ∈ C. Or more simply as a matrix equation:(
uλD(0) vλD(0)
uλD(d) vλD(d)

)(
A

B

)
= 0.
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The condition for the solution to such an equation is

∣∣∣∣∣uλD(0) vλD(0)
uλD(d) vλD(d)

∣∣∣∣∣ = uλD(0)vλD(d)− uλD(d)vλD(0) = 0.

So we get that

Ai
(
−λDF−

2
3

)
Bi

(
F

1
3

(
d− λD

F

))
−Bi

(
−λDF−

2
3

)
Ai

(
F

1
3

(
d− λD

F

))
= 0. (12)

Weak electric field

If F → 0, for a λD ∈ [a, b], with a and b independent of F , −λDF−
2
3 and

F
1
3

(
d− λD

F

)
tends to −∞. We recall the asymptotic properties of Airy func-

tions given in [1, 10]

Ai(−t) ∼
sin(2

3 t
3
2 + π

4 )√
πt

1
4

; t→ +∞ (13)

Bi(−t) ∼
cos(2

3 t
3
2 + π

4 )√
πt

1
4

; t→ +∞. (14)

Here and from now on, we use the standard convention for the asymptotic formula

f(x) ∼ g(x) as x → x0 when lim
x→x0

f(x)

g(x)
= 1 if g(x) 6= 0 or when f(x) =

g(x) + o(g(x)).
We set

wD,1 =
2
3
(λD)

3
2F−1, (15)
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and

wD,2 =
2
3

[
F

1
3

(
λD

F
− d
)] 3

2

=
2
3

[
λDF

−2
3

(
1− dF

λD

)] 3
2

=
2
3
(λD)

3
2F−1

(
1− dF

λD

) 3
2

∼ 2
3
(λD)

3
2F−1

(
1− 3

2
dF

λD
+

3
8

(
dF

λD

)2

+ o(F 2)

)
;F → 0

∼ 2
3
(λD)

3
2F−1 − d(λD)

1
2 +

1
4
d2(λD)−

1
2F + o(F );F → 0. (16)

The equation (12) becomes

sin
(
wD,1 +

π

4

)
cos
(
wD,2 +

π

4

)
− sin

(
wD,2 +

π

4

)
cos
(
wD,1 +

π

4

)
= 0.

This can be written as
sin(wD,1 − wD,2) = 0.

So, we get
wD,1 − wD,2 = nπ; n ∈ Z.

One computes

wD,1 − wD,2 =
2
3
(λD)

3
2F−1 −

(2
3
(λD)

3
2F−1

− d(λD)
1
2 +

1
4
d2(λD)−

1
2F + o(F )

)
= d(λD)

1
2 − 1

4
d2(λD)−

1
2F + o(F ).

Taking into account the sign of wD,1 − wD,2, we get

wD,1 − wD,2 = nπ; for n ∈ Z∗+.

So, we get the following condition:

dλ
1
2
D −

1
4
d2λ
− 1

2
D F + o(F ) = nπ; n ∈ {1, 2, 3, · · · }. (17)
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Multiply the last equation by (λD)
1
2

dλD − 1
4
d2F + o(F ) = nπ(λD)

1
2 ; n ∈ {1, 2, 3, · · · }. (18)

So,

dλD − nπ(λD)
1
2 − 1

4
d2F = o(F ); n ∈ {1, 2, 3, · · · }.

We set (λD)
1
2 = ν, and consider the equation

dν2 − nπν − 1
4
d2F = o(F ); n ∈ {1, 2, 3, · · · }. (19)

We notice that the left side of equation (19) is an equation of degree two and its
solutions are given by

ν1 =
nπ −

√
n2π2 + d3F

2d
+ o(F ); n ∈ {1, 2, 3, · · · }, (20)

ν2 =
nπ +

√
n2π2 + d3F

2d
+ o(F ); n ∈ {1, 2, 3, · · · }. (21)

As we are interested for eigenvalues in some fixed interval we consider only ν2,
and we obtain

λD = ν2
2 =

(
nπ +

√
n2π2 + d3F

2d

)2

+ o(F ); n ∈ {1, 2, 3, · · · }. (22)

There is a sequence of solutions, so we re-index λD by λDn for n ∈ {1, 2, 3, · · · }.
So the eigenvalues of the operator HD are given by:

λDn =

(
nπ +

√
n2π2 + d3F

2d

)2

+ o(F ); n ∈ {1, 2, 3, · · · }. (23)

Strong electric field

When F → +∞, F
1
3

(
d− λD

F

)
tends to +∞. So, by asymptotic properties of

the Airy functions as t goes to +∞ (see [1])

Ai(t) ∼
exp(− 2

3 t
3
2 )

2
√
πt

1
4

, (24)

Bi(t) ∼
exp(2

3 t
3
2 )

√
πt

1
4

, (25)
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and by the properties of Airy functions for a real negative x

Ai(t) = M(t) sin θ(t), (26)

Bi(t) = M(t) cos θ(t), (27)

where

M(t) =
√
Ai2(t) +Bi2(t), (28)

θ(t) = arctan (Ai(t)/Bi(t)) . (29)

The equation (12) takes the following form:

sin θ
(
−λDF−

2
3

)
exp

2
3

[
F

1
3

(
d− λD

F

)] 3
2

− 1
2

cos θ
(
−λDF−

2
3

)

× exp

−2
3

[
F

1
3

(
d− λD

F

)] 3
2

 = 0.

So, we get

tan θ
(
−λDF−

2
3

)
=

1
2

exp

(
−4

3

[
F

1
3

(
d− λD

F

)] 3
2

)
. (30)

Since exp

−4
3

[
F

1
3

(
d− λD

F

)] 3
2

 ∼ 0 when F → +∞, the last equation

becomes
tan θ

(
−λDF−

2
3

)
∼ 0.

So using equation (29) and by applying tan in the two sides one gets,

Ai
(
−λDF−

2
3

)
= 0.

Consequently, we obtain

−λDF−
2
3 = αn, n ∈ {1, 2, 3, · · · },

where αn is the n-th negative zero of the Airy function Ai. Therefore, we have a
sequence of eigenvalues

λD = −αnF
2
3 , n ∈ {1, 2, 3, · · · }. (31)
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2.3 The Dirichlet-Neumann boundary conditions

As in the previous case, the use of boundary conditions of type Dirichlet at d and
Neumann at 0, yields to

u′λDN (0)vλDN (d)− v′λDN (0)uλDN (d) = 0. (32)

This implies that

Ai′
(
−λDNF−

2
3

)
Bi

(
F

1
3

(
d− λDN

F

))
−Bi′

(
−λDNF−

2
3

)
×Ai

(
F

1
3

(
d− λDN

F

))
= 0. (33)

Weak electric field

When F → 0, for λDN ∈ [a, b], with a and b independent of F −λDNF−
2
3 and

F
1
3

(
d− λDN

F

)
tends to −∞. Then, using the asymptotic properties of Airy

functions (13) and (14) as t goes to +∞, we get

−Ai′(−t) ∼ 1√
π

[
t

1
4 cos

(
2
3
t

3
2 +

π

4

)
− t−

5
4

4
sin
(

2
3
t

3
2 +

π

4

)]
,

−Bi′(−t) ∼ 1√
π

[
−t

1
4 sin

(
2
3
t

3
2 +

π

4

)
− t−

5
4

4
cos
(

2
3
t

3
2 +

π

4

)]
.

We set

wDN1 =
2
3
(λDN )

3
2F−1, (34)

and

wDN2 =
2
3

[
F

1
3

(
λDN

F
− d
)] 3

2

=
2
3

[
λDNF

−2
3

(
1− dF

λDN

)] 3
2

∼ 2
3
(λDN )

3
2F−1 − d(λDN )

1
2 +

1
4
d2(λDN )−

1
2F + o(F ). (35)
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The equation (12) yields

−

[
(λDNF−

2
3 )

1
4 cos

(
wDN1 +

π

4

)
− (λDNF−

2
3 )−

5
4

4
sin
(
wD1 +

π

4

)]

× cos
(
wDN2 +

π

4

)
+

[
− (λDNF−

2
3 )

1
4 sin

(
wDN1 +

π

4

)
− (λDNF−

2
3 )−

5
4

4

× cos
(
wDN1 +

π

4

)]
sin
(
wDN2 +

π

4

)
= 0. (36)

Since the sine and cosine functions are bounded functions and since we have
(λDNF−

2
3 )−

5
4 ∼ 0 if F → 0, the equation (36) becomes

− (λDNF−
2
3 )

1
4

[
cos
(
wDN1 +

π

4

)
cos
(
wDN2 +

π

4

)
+ sin

(
wDN1 +

π

4

)
× sin

(
wDN2 +

π

4

)]
= 0. (37)

As (λDNF−
2
3 )

1
4 6= 0, we get that

cos
(
wDN1 +

π

4

)
cos
(
wDN2 +

π

4

)
+ sin

(
wDN1 +

π

4

)
sin
(
wDN2 +

π

4

)
= 0. (38)

So, equation (38) reduces to

cos(wDN1 − wDN2 ) = 0.

Thus, we have
wDN1 − wDN2 =

π

2
+ nπ; n ∈ Z.

Since

wDN1 − wDN2 =
2
3
(λDN )

3
2F−1

−
(2

3
(λDN )

3
2F−1 − d(λDN )

1
2 +

1
4
d2(λDN )−

1
2F + o(F )

)
= d(λDN )

1
2 − 1

4
d2(λDN )−

1
2F + o(F ),
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and taking into account the sign of wDN1 − wDN2 , we conclude that

wDN1 − wDN2 =
π

2
+ nπ; n ∈ Z+.

So,

d(λDN )
1
2 − 1

4
d2(λDN )−

1
2F + o(F ) = (2n+ 1)

π

2
; n ∈ {0, 1, 2, · · · }.

We multiply the last equation by (λDN )
1
2

dλDN − 1
4
d2F + o(F ) = (2n+ 1)

π

2
(λDN )

1
2 ; n ∈ Z+. (39)

We set (λDN )
1
2 = µ, and get

dµ2 − (2n+ 1)
π

2
µ− 1

4
d2F = o(F ); n ∈ Z+. (40)

The left side of equation (40) is a second degree equation whose solutions are

µ1 =
(2n+ 1)π2 −

√
(2n+ 1)2(π2 )

2 + d3F

2d
+ o(F ); n ∈ Z+,

µ2 =
(2n+ 1)π2 +

√
(2n+ 1)2(π2 )

2 + d3F

2d
+ o(F ); n ∈ Z+.

As we are interested for eigenvalues in some fixed interval we consider only µ2,
we finally obtain that

λDN = µ2
2

=

(2n+ 1)π2 +
√

(2n+ 1)2(π2 )
2 + d3F

2d

2

+ o(F );n ∈ Z+.(41)

We get that there is a sequence of solutions, so we re-index λDN by λDNn+1 for
n ∈ {1, 2, 3, · · · }. Therefore the eigenvalues of the operator HDN are given by

λDNn+1 =

(2n+ 1)π2 +
√

(2n+ 1)2(π2 )
2 + d3F

2d

2

+ o(F );n ∈ Z+. (42)
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Strong electric field

We know that the Dirichlet-Neumann boundary conditions at points d and 0 are
described as

Ai′
(
−λDNF−

2
3

)
Bi

(
F

1
3

(
d− λDN

F

))
−Bi′

(
−λDNF−

2
3

)
×Ai

(
F

1
3

(
d− λDN

F

))
= 0. (43)

When F → +∞, −λDNF−
2
3 tends to 0 and the term F

1
3

(
d− λDN

F

)
tends to

+∞. So, by the asymptotic behavior of the Airy functions as t goes to +∞ given
in equations (24) and (25) and by the properties of the Airy function for a negative
t

Ai′(t) = N(t) sinφ(t), (44)

Bi′(t) = N(t) cosφ(t), (45)

with

N(t) =
√
Ai′2(t) +Bi′2(t),

φ(t) = arctan
(
Ai′(t)/Bi′(t)

)
,

and the equation (12) is written as

sinφ
(
−λDNF−

2
3

)
exp

2
3

[
F

1
3

(
d− λDN

F

)] 3
2

− 1
2

cosφ
(
−λDNF−

2
3

)

× exp

−2
3

[
F

1
3

(
d− λDN

F

)] 3
2

 = 0.

So, we have

tanφ
(
−λDNF−

2
3

)
=

1
2

exp

−4
3

[
F

1
3

(
d− λDN

F

)] 3
2

 . (46)

As exp
(
− 4

3

[
F

1
3

(
d− λDN

F

)] 3
2

)
has limit 0 when F → +∞, the last equation

becomes
tanφ

(
−λDNF−

2
3

)
= 0.
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As a result, we get:
Ai′(−λDNF−

2
3 ) = 0.

Therefore, we obtain

−λDNF−
2
3 = α′n, n ∈ {1, 2, 3, · · · },

where α′n is the n-th negative zero of the Airy function derivative Ai′. This yields
a sequence of eigenvalues given by

λDNn = −α′nF
2
3 , n ∈ {1, 2, 3, · · · }. (47)

3 Conclusion

We obtain asymptotic representations for eigenvalues of the Stark operators with
various boundary conditions. The formulas are presented in simple forms which
highlights the dependence on F . The perturbation theory previously used in this
context covers only the case F → 0. The WKB method used to get the asymp-
totics of eigenvalues and eigenfunctions of differential equations have their inher-
ent drawback because it gives good approximation only for large eigenvalues i.e,
when λD,DNn → +∞. So, here one gets another novelty of the paper which is that
our method allows one to estimate the eigenvalues for both the strong (F → +∞)
and weak electric filed (F → 0) and for any order.
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