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On the non existence of periodic orbits for a class of
two dimensional Kolmogorov systems
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Abstract. In this paper we characterize the integrability and the non-existence of limit
cycles of Kolmogorov systems of the form

x′ = x

(
B1(x, y) ln

∣∣∣∣A3(x, y)

A4(x, y)

∣∣∣∣+B3(x, y)ln

∣∣∣∣A1(x, y)

A2(x, y)

∣∣∣∣) ,

y′ = y

(
B2(x, y)ln

∣∣∣∣A5(x, y)

A6(x, y)

∣∣∣∣+B3(x, y)ln

∣∣∣∣A1(x, y)

A2(x, y)

∣∣∣∣)
where A1 (x, y) , A2 (x, y) , A3 (x, y) , A4 (x, y) , A5 (x, y) , A6 (x, y) , B1 (x, y) , B2 (x, y) ,
B3 (x, y) are homogeneous polynomials of degree a, a, b, b, c, c, n, n, m respectively.
Concrete example exhibiting the applicability of our result is introduced.
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1 Introduction

The autonomous differential systems on the plane given by
x′ =

dx

dt
= xF (x, y) ,

y′ =
dy

dt
= yG (x, y) ,

(1)

is known as Kolmogorov systems, the derivatives are performed with respect to
the time variable, and F , G are two functions in the variables x and y. Is fre-
quently used to model the iteration of two species occupying the same ecological
niche [10, 15, 17]. There are many natural phenomena which can be modeled by
the Kolmogorov systems such as mathematical ecology and population dynam-
ics [12, 18, 19] chemical reactions, plasma physics [14], hydrodynamics [5], eco-
nomics, etc. In the classical Lotka- Volterra-Gause model, F and G are linear and
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it is well known that there are no limit cycles. There can, of course, only be one
critical point in the interior of the positive quadrant (x > 0, y > 0) in this case,
but this can be a center; however, there are no isolated periodic solutions. We
remind that in the phase plane, a limit cycle of system (1) is an isolated periodic
orbit in the set of all periodic orbits of system (1). In the qualitative theory of
planar dynamic systems [4, 7, 8, 9, 16], one of the most important topics is related
to the second part of the unsolved Hilbert 16th problem [13]. There is a huge lit-
erature about limit cycles, most of them deal essentially with their detection, their
number and their stability and rare are papers concerned by giving them explicitly
[1, 2, 3, 11, 21].

System (1) is integrable on an open set Ω of R2 if there exists a non constant C1

function H : Ω → R, called a first integral of the system on Ω , which is constant
on the trajectories of the system (1) contained in Ω, i.e., if

dH (x, y)

dt
=

∂H (x, y)

∂x
xF (x, y) +

∂H (x, y)

∂y
yG (x, y) ≡ 0 in the points of Ω.

Moreover, H = h is the general solution of this equation, where h is an arbi-
trary constant. It is well known that for differential systems defined on the plane
R2 the existence of a first integral determines their phase portrait [6].

In this paper we are interested in studying the integrability and the periodic
orbits of the 2-dimensional Kolmogorov systems of the form

x′ = x
(
B1 (x, y) ln

∣∣∣A3(x,y)
A4(x,y)

∣∣∣+B3 (x, y) ln
∣∣∣A1(x,y)
A2(x,y)

∣∣∣) ,
y′ = y

(
B2 (x, y) ln

∣∣∣A5(x,y)
A6(x,y)

∣∣∣+B3 (x, y) ln
∣∣∣A1(x,y)
A2(x,y)

∣∣∣) , (2)

where A1 (x, y) , A2 (x, y) , A3 (x, y) , A4 (x, y) , A5 (x, y) , A6 (x, y) , B1 (x, y) ,
B2 (x, y) , B3 (x, y) are homogeneous polynomials of degree a, a, b, b, c, c, n, n,
m respectively.

We define the trigonometric functions

f1 (θ) =B1 (cos θ, sin θ)
(
cos2 θ

)
ln
∣∣∣∣A3 (cos θ, sin θ)
A4 (cos θ, sin θ)

∣∣∣∣
+B2 (cos θ, sin θ)

(
sin2 θ

)
ln
∣∣∣∣A5 (cos θ, sin θ)
A6 (cos θ, sin θ)

∣∣∣∣ ,
f2 (θ) =B3 (cos θ, sin θ) ln

∣∣∣∣A1 (cos θ, sin θ)
A2 (cos θ, sin θ)

∣∣∣∣ ,
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f3 (θ) = (cos θ sin θ)
(
B2 (cos θ, sin θ) ln

∣∣∣∣A5 (cos θ, sin θ)
A6 (cos θ, sin θ)

∣∣∣∣
−B1 (cos θ, sin θ) ln

∣∣∣∣A3 (cos θ, sin θ)
A4 (cos θ, sin θ)

∣∣∣∣) .

2 Main result

Our main result on the integrability and the periodic orbits of the 2-dimensional
Kolmogorov system (2) is the following.

Theorem 2.1. Consider the Kolmogorov system (2), then the following statements
hold.

(1) If f3 (θ) ̸= 0, Ai (cos θ, sin θ) ̸= 0 for i = 1, 2, 3, 4, 5, 6 and n ̸= m, then
system (2) has the first integral

H (x, y) =
(
x2 + y2)n−m

2 exp

(
(m− n)

∫ arctan y
x

0
M (ω) dω

)

− (n−m)

∫ arctan y
x

0
exp

(
(m− n)

∫ w

0
M (ω) dω

)
N (w) dw,

where M (θ) = f1(θ)
f3(θ)

, N (θ) = f2(θ)
f3(θ)

, and the curves which are formed by the
trajectories of the differential system (2), in Cartesian coordinates are written as

x2 + y2 =


h exp

(
(n−m)

∫ arctan y
x

0 M (ω) dω
)

+(n−m) exp
(
(n−m)

∫ arctan y
x

0 M (ω) dω
)

∫ arctan y
x

0 exp
(
(m− n)

∫ w
0 M (ω) dω

)
N (w) dw


2

n−m

,

where h ∈ R. Moreover, the system (2) has no limit cycle.
(2) If f3 (θ) ̸= 0, Ai (cos θ, sin θ) ̸= 0 for i = 1, 2, 3, 4, 5, 6 and n − m ̸= 1,

then system (2) has the first integral

H (x, y) =
(
x2 + y2)n−m

2 exp

(
(m− n)

∫ arctan y
x

0
M (ω) dω

)

− (n−m)

∫ arctan y
x

0
exp

(
(m− n)

∫ w

0
M (ω) dω

)
N (w) dw,
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where M (θ) = f1(θ)
f3(θ)

, N (θ) = f2(θ)
f3(θ)

, and the curves which are formed by the
trajectories of the differential system (2), in Cartesian coordinates are written as

x2 + y2 =


h exp

(
(n−m)

∫ arctan y
x

0 M (ω) dω
)

+(n−m) exp
(
(n−m)

∫ arctan y
x

0 M (ω) dω
)

∫ arctan y
x

0 exp
(
(m− n)

∫ w
0 M (ω) dω

)
N (w) dw


2

n−m

,

where h ∈ R. Moreover, the system (2) has no limit cycle.
(3) If f3 (θ) ̸= 0, Ai (cos θ, sin θ) ̸= 0 for i = 1, 2, 3, 4, 5, 6 and n = m, then

system (2) has the first integral

H (x, y) =
(
x2 + y2) 1

2 exp

(
−
∫ arctan y

x

0
(M (ω) +N (ω)) dω

)
,

and the curves which are formed by the trajectories of the differential system (2),
in cartesian coordinates are written as

(
x2 + y2) 1

2 − h exp

(∫ arctan y
x

0
(M (ω) +N (ω)) dω

)
= 0,

where h ∈ R. Moreover, the system (2) has no limit cycle.
(4) If f3 (θ) = 0 for all θ ∈ R, then system (2) has the first integral H = y

x ,
and the curves which are formed by the trajectories of the differential system (2),
in cartesian coordinates are written as y − hx = 0, where h ∈ R. Moreover, the
system (2) has no limit cycle.

Proof. In order to prove our results we write the differential system (2) in po-
lar coordinates (r, θ) , defined by x = r cos θ and y = r sin θ, then system (2)
becomes 

r′ =
dr

dt
= f1 (θ) r

n+1 + f2 (θ) r
m+1,

θ′ =
dθ

dt
= f3 (θ) r

n,

(3)

where the trigonometric functions f1 (θ) , f2 (θ) , f3 (θ) are given in introduction.
Suppose that f3 (θ) ̸= 0, Ai (cos θ, sin θ) ̸= 0 for i = 1, 2, 3, 4, 5, 6 and n ̸= m.
Taking as independent variable the coordinate θ, this differential system (3)

writes
dr

dθ
= M (θ) r +N (θ) r1+m−n, (4)
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where M (θ) =
f1 (θ)

f3 (θ)
and N (θ) =

f2 (θ)

f3 (θ)
, which is a Bernoulli equation. By

introducing the standard change of variables ρ = rn−m, we obtain the linear equa-
tion

dρ

dθ
= (n−m) (M (θ) ρ+N (θ)) . (5)

The general solution of linear equation (5) is

ρ (θ) = exp
(
(n−m)

∫ θ

0
M (ω) dω

)
(
µ+ (n−m)

∫ θ

0
exp

(
(m− n)

∫ w

0
M (ω) dω

)
N (w) dw

)
,

where µ ∈ R, which has the first integral

H (x, y) =
(
x2 + y2)n−m

2 exp

(
(m− n)

∫ arctan y
x

0
M (ω) dω

)

+(m− n)

∫ arctan y
x

0
exp

(
(m− n)

∫ w

0
M (ω) dω

)
N (w) dw.

The curves H = h with h ∈ R, which are formed by trajectories of the differ-
ential system (2), in cartesian coordinates are written as

x2 + y2 =


h exp

(
(n−m)

∫ arctan y
x

0 M (ω) dω
)

+(n−m) exp
(
(n−m)

∫ arctan y
x

0 M (ω) dω
)

∫ arctan y
x

0 exp
(
(m− n)

∫ w
0 M (ω) dω

)
N (w) dw


2

n−m

,

where h ∈ R.
Let Γ be a periodic orbit located in the positive quadrant, then periodic orbit Γ

is contained in the curve

x2 + y2 =


hΓ exp

(
(n−m)

∫ arctan y
x

0 M (ω) dω
)

+(n−m) exp
(
(n−m)

∫ arctan y
x

0 M (ω) dω
)

∫ arctan y
x

0 exp
(
(m− n)

∫ w
0 M (ω) dω

)
N (w) dw


2

n−m

.

The intersection points (x, y) of this curve with straight line y = ηx for all
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η ∈ ]0,+∞[ , is given by

y = ηx,

and

x2 + y2 =


hΓ exp

(
(n−m)

∫ arctan y
x

0 M (ω) dω
)

+(n−m) exp
(
(n−m)

∫ arctan y
x

0 M (ω) dω
)

∫ arctan y
x

0 exp
(
(m− n)

∫ w
0 M (ω) dω

)
N (w) dw


2

n−m

.

Then, the abscissa points of intersection is given by

x =
1√

1 + η2


hΓ exp

(
(n−m)

∫ arctan η
0 M (ω) dω

)
+

(n−m) exp
(
(n−m)

∫ arctan η
0 M (ω) dω

)
∫ arctan η

0 exp
(
(m− n)

∫ w
0 M (ω) dω

)
N (w) dw


2

n−m

.

From this last formula of x, at most a unique value of x on every half straight
OX+, consequently at most a unique point in positive quadrant (x > 0, y > 0).
So this curve cannot contain the periodic orbit.

Hence statement (1) of Theorem 1 is proved.
Suppose now that f3 (θ) ̸= 0, Ai (cos θ, sin θ) ̸= 0 for i = 1, 2, 3, 4, 5, 6 and

n−m = 1.
Taking as independent variable the coordinate θ, this differential system (3)

writes
dr

dθ
= M (θ) r +N (θ) , (6)

where M (θ) =
f1 (θ)

f3 (θ)
and N (θ) =

f2 (θ)

f3 (θ)
, which is a linear equation.

The general solution of linear equation (6) is

ρ (θ) = exp
(∫ θ

0
M (ω) dω

)
(
µ+

∫ θ

0
exp

(
−
∫ w

0
M (ω) dω

)
N (w) dw

)
,

where µ ∈ R, which has the first integral

H (x, y) =
√

x2 + y2 exp

(
−
∫ arctan y

x

0
M (ω) dω

)

−
∫ arctan y

x

0
exp

(
−
∫ w

0
M (ω) dω

)
N (w) dw.
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The curves H = h with h ∈ R, which are formed by trajectories of the differ-
ential system (2), in cartesian coordinates are written as

x2 + y2 =

 h exp
(∫ arctan y

x
0 M (ω) dω

)
+ exp

(∫ arctan y
x

0 M (ω) dω
)

∫ arctan y
x

0 exp
(
−
∫ w

0 M (ω) dω
)
N (w) dw

2

,

where h ∈ R.
Let Γ be a periodic orbit located in the positive quadrant, then periodic orbit Γ

is contained in the curve

x2 + y2 =

 hΓ exp
(∫ arctan y

x
0 M (ω) dω

)
+ exp

(∫ arctan y
x

0 M (ω) dω
)

∫ arctan y
x

0 exp
(
−
∫ w

0 M (ω) dω
)
N (w) dw

2

.

The intersection points (x, y) of this curve with straight line y = ηx for all
η ∈ ]0,+∞[ , is given by

y = ηx,

and

x2 + y2 =

 hΓ exp
(∫ arctan y

x
0 M (ω) dω

)
+ exp

(∫ arctan y
x

0 M (ω) dω
)

∫ arctan y
x

0 exp
(
−
∫ w

0 M (ω) dω
)
N (w) dw

2

.

Then, the abscissa points of intersection is given by

x =
1√

1 + η2

(
hΓ exp

(∫ arctan η
0 M (ω) dω

)
+ exp

(∫ arctan η
0 M (ω) dω

)
∫ arctan η

0 exp
(
−
∫ w

0 M (ω) dω
)
N (w) dw

)2

.

From this last formula of x, at most a unique value of x on every half straight
OX+, consequently at most a unique point in positive quadrant (x > 0, y > 0).
So this curve cannot contain the periodic orbit.

Hence statement (2) of Theorem 1 is proved.
Suppose now that f3 (θ) ̸= 0, Ai (cos θ, sin θ) ̸= 0 for i = 1, 2, 3, 4, 5, 6 and

n = m.
Taking as independent variable the coordinate θ, this differential system (3)

writes
dr

dθ
= (M (θ) +N (θ)) r. (7)

The general solution of equation (7) is

r (θ) = µ exp
(∫ θ

0
(M (ω) +N (ω)) dω

)
,
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where µ ∈ R, which has the first integral

H (x, y) =
(
x2 + y2) 1

2 exp

(
−
∫ arctan y

x

0
(M (ω) +N (ω)) dω

)
.

The curves H = h with h ∈ R, which are formed by trajectories of the differ-
ential system (2), in cartesian coordinates are written as

(
x2 + y2) 1

2 − h exp

(∫ arctan y
x

0
(M (ω) +N (ω)) dω

)
= 0,

where h ∈ R.
Let Γ be a periodic orbit located in the positive quadrant, then periodic orbit Γ

is contained in the curve(
x2 + y2) 1

2 = hΓ exp

(∫ arctan y
x

0
(M (ω) +N (ω)) dω

)
.

The intersection points (x, y) of this curve with straight line y = ηx for all
η ∈ ]0,+∞[ , is given by

y = ηx,

and(
x2 + y2

) 1
2 = hΓ exp

(∫ arctan y
x

0 (M (ω) +N (ω)) dω
)
.

Then, the abscissa points of intersection is given by

x =
hΓ√

(1 + η2)
exp

(∫ arctan η

0
(M (ω) +N (ω)) dω

)
.

From this last formula of x, at most a unique value of x on every half straight
OX+, consequently at most a unique point in positive quadrant (x > 0, y > 0).
So this curve cannot contain the periodic orbit.

Hence statement (3) of Theorem 1 is proved.
Assume now that f3 (θ) = 0 for all θ ∈ R, then from system (3) it follows that

θ′ = 0. So the straight lines through the origin of coordinates of the differential
system (2) are invariant by the flow of this system. Hence, y

x is a first integral
of the system, then curves which are formed by the trajectories of the differential
system (2), in cartesian coordinates are written as y−hx = 0, where h ∈ R, since
all straight lines through the origin are formed by trajectories, clearly the system
has no periodic orbits, consequently no limit cycle.

This completes the proof of statement (4) of Theorem 1.
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3 Example

The following example is given to illustrate our result.
Example 3.1. If we take A1 (x, y) = 5x2 + 4y2, A2 (x, y) = x2 + y2, A3 (x, y) =
eA4 (x, y) , A5 (x, y) = eA6 (x, y) , B1 (x, y) = x4 + x3y + 2x2y2 + xy3 + y4,
B2 (x, y) = x4 + 2x3y + 2x2y2 + 2xy3 + y4 and B3 (x, y) = 3x2 − xy + 3y2,
then system (2) reads

x′ = x
((
x4 + x3y + 2x2y2 + xy3 + y4

)
+
(
3x2 − xy + 3y2

)
ln
∣∣∣ 5x2+4y2

x2+y2

∣∣∣) ,
y′ = y

((
x4 + 2x3y + 2x2y2 + 2xy3 + y4

)
+
(
3x2 − xy + 3y2

)
ln
∣∣∣ 5x2+4y2

x2+y2

∣∣∣) ,
(8)

the 2-dimensional Kolmogorov system (8) in polar coordinates (r, θ) becomes

r′ =
(
1 + 3

4 sin 2θ − 1
8 sin 4θ

)
r5 + (3 − cos θ sin θ) ln

( 9
2 + 1

2 cos 2θ
)
r3,

θ′ =
(
cos2 θ sin2 θ

)
r4,

where f1 (θ) = 1+ 3
4 sin 2θ− 1

8 sin 4θ, f2 (θ) = (3 − cos θ sin θ) ln
( 9

2 + 1
2 cos 2θ

)
and f3 (θ) = cos2 θ sin2 θ. In the positive quadrant (x > 0, y > 0) it is the case
(a) of the Theorem 1, then the Kolmogorov system (8) has the first integral

H (x, y) =
(
x2 + y2) exp

(
−2
∫ arctan y

x

0
M (ω) dω

)

−2
∫ arctan y

x

exp
(
−2
∫ w

0
M (ω) dω

)
B (w) dw,

where

M (ω) =
1 + 3

4 sin 2ω − 1
8 sin 4ω

cos2 ω sin2 ω
, N (w) =

(3 − cosw sinw) ln
( 9

2 + 1
2 cos 2w

)
cos2 w sin2 w

.

The curves H = h with h ∈ R, which are formed by trajectories of the differ-
ential system (8), in Cartesian coordinates are written as

x2 + y2 = h exp

(
2
∫ arctan y

x

0
M (ω) dω

)
+ 2 exp

(
2
∫ arctan y

x

0
M (ω) dω

)
∫ arctan y

x

0
exp

(
−2
∫ w

0
N (ω) dω

)
N (w) dw
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where h ∈ R. The system (8) has no periodic orbits, and consequently no limit
cycle.
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