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1 Introduction

First of all, we note that a detailed overview on the nonlocal boundary value prob-
lem (NLBVP) that we consider in this paper is enclosed in [16, p. 38-39].

Let Π designates an open rectangle, i.e., Π = (0 < x < 1) × (0 < y < π).
Our present paper deals with Poisson’s equation ∆u(x, y) = f(x, y) in the
rectangular domain Π where nonlocal boundary value condition (NLBVC) is
represented by a linear combination of unknown solution values

u(1, y) = α1u(ξ1, y) + α2u(ξ2, y) + ...+ αmu(ξm, y)

for y ∈ [0, π], ξk ∈ (0, 1), k = 1, ...,m and u(x, y)|∂Π\{x=1} = 0 is given
on three sides of the rectangle boundary ∂Π. Actually, herein the coefficients
αk, k = 1, ...,m have an arbitrary sign. This kind of NLBVP was considered in
[3] where the existence and uniqueness of classical solution were proved against
the requirement

m∑
k=1

1
2
(αk + |αk|) ≤ 1,

but a priori estimate
||u||W 2

2 (Π) ≤ C||f ||L2(Π)
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was established for the same sign coefficients which satisfy the condition

−∞ <

m∑
k=1

αk ≤ 1.

In addition, the second order of accuracy finite-difference scheme was offered on
a uniform grid. In [5], the existence and uniqueness of classical solution were
proved for a similar NLBVP in a rectangular domain when

m∑
k=1

|αk| ≤ |B1|−1

for 0 < |B1| < 1, where the value |B1|−1 could be an unboundedly large if

ξm → 0, so that the unboundedness for
m∑
k=1

|αk| was revealed.

In [16], the differential and difference variants of NLBVP formulated in [3]
were researched for the case when NLBVC encloses positive and negative coef-
ficients together without failing. The condition of paper [3] on the coefficients
in respect of NLBVC was improved, the well-posedness of the differential prob-
lem was established, a second order of accuracy approximation for the suggested
difference scheme was proved.

In our present paper, we obtain a new condition that ensures the existence,
uniqueness and a priori estimate of classical solution for the class of NLBVPs
which was considered in [16]. Our new well-posedness condition for the differ-
ential problem reveals the unboundedness effect for the coefficients of NLBVC.
In addition, herein, we improve the condition of [16] in respect of the difference
problem and obtain a second order of accuracy for the difference scheme.

Before finishing this introduction, we note that for the NLBVP which we con-
sider in our present paper, the most relevant references [1–15] from [16, p. 51-52]
are included in the bibliography.

2 Differential problem

We consider NLBVP
∆u(x, y) = f(x, y), (x, y) ∈ Π,

u(x, 0) = u(x, π) = 0, 0 ≤ x ≤ 1, u(0, y) = 0, 0 ≤ y ≤ π,

ℓ[u](y) = 0, 0 ≤ y ≤ π,

(1)

where

ℓ[u](y) ≡ u(1, y)−
n∑

r=1

αru(ζr, y) +

m∑
s=1

βsu(ηs, y),
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0 < ζ1 < ... < ζn < 1, 0 < η1 < ... < ηm < 1, ζr ̸= ηs, αr > 0,
βs > 0, r = 1, ..., n, s = 1, ...,m. Further in this article, A denotes following
conditions:

−∞ <

n∑
r=1

αr −
m∑
s=1

βs <
sinh 1
sinh ζn

when ζn < η1;

n∑
r=1

αr <
sinh 1
sinh ζn

when ζn > η1.

Naturally, the classical solution of NLBVP (1) is the function u(x, y) that belongs
to C2(Π) ∩ C(Π), satisfies the equation and all conditions of (1).

Lemma 2.1. For x ∈ (0, 1) and t > 1 the following inequalities hold

1 >
sinhx
sinh 1

>
sinh tx
sinh t

.

Proof. Left side of inequality is obvious. Let we show that the other one holds.
Let

g(t) =
sinh tx
sinh t

for specified x ∈ (0, 1), then

g′(t) =
(sinh tx

sinh t

)′
=

x cosh tx sinh t− sinh tx cosh t
(sinh t)2 .

Since ∫
sinh at sinh bt dt =

1
a2 − b2

(
a sinh bt cosh at− b sinh at cosh bt

)
for a2 ̸= b2,

g′(t) =
x cosh tx sinh t− sinh tx cosh t

(sinh t)2 =
x2 − 1
(sinh t)2

t∫
0

sinhxτ sinh τ dτ.

Since g′(t) < 0 for t > 0, g(t) strictly decreases, and therefore, for t > 1

sinhx
sinh 1

>
sinh tx
sinh t

.

Lemma 2.1 is proved.
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Theorem 2.2. Let f ∈ C(Π). If A holds, then classical solution of (1) exists, is
unique and holds a priori estimate

||u||W 2
2 (Π) ≤ C||f ||L2(Π). (2)

Proof. First, we prove a priori estimate (2). We assume that classical solution
exists. For k ∈ N let us denote

Uk(x) =
√

2/π

π∫
0

u(x, y) sin(ky) dy, (3)

fk(x) =
√

2/π

π∫
0

f(x, y) sin(ky) dy, (4)

so that using the equation ∆u(x, y) = f(x, y) and conditions

u(0, y) = 0, u(1, y) =
n∑

r=1

αru(ζr, y)−
m∑
s=1

βsu(ηs, y),

we see that Uk(x) satisfies the multipoint problem{
L[Uk](x) = fk(x), 0 < x < 1,
Uk(0) = 0, ℓ[Uk] = 0,

(5)

where
L[Uk](x) ≡ U ′′

k (x)− k2Uk(x), (6)

ℓ[Uk] ≡ Uk(1)−
( n∑

r=1

αrUk(ζr)−
m∑
s=1

βsUk(ηs)
)
. (7)

Letting Uk(x) = Vk(x) +Wk(x), where Vk(x) is the solution of{
L[Vk(x)] = fk(x), 0 < x < 1,
Vk(0) = 0, Vk(1) = 0,

(8)

while Wk(x) is the solution of{
L[Wk(x)] = 0, 0 < x < 1,
Wk(0) = 0, ℓ[Wk] = −ℓ[Vk].

(9)
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In view of [3, p. 143], the solution of (8) holds the estimates

||Vk||L2[0,1] ≤ 1
k2 ||fk||L2[0,1], (10)

||V ′
k||L2[0,1] ≤ 1

k
||fk||L2[0,1], (11)

||V ′′
k ||L2[0,1] ≤ ||fk||L2[0,1]. (12)

Since Vk(1) = 0, by virtue of Cauchy-Bunyakovskii inequality

∣∣ 1∫
ζr

([Vk(x)]
2)′dx

∣∣ = 2
∣∣ 1∫
ζr

Vk(x)V
′
k(x)dx

∣∣ ≤ 2 ||Vk||L2[0,1]||V
′
k||L2[0,1], (13)

∣∣ 1∫
ηs

([Vk(x)]
2)′dx

∣∣ = 2
∣∣ 1∫
ηs

Vk(x)V
′
k(x)dx

∣∣ ≤ 2 ||Vk||L2[0,1]||V
′
k||L2[0,1]. (14)

Since for ξ ∈ (0, 1)

[Vk(ξ)]
2 =

∣∣ 1∫
ξ

([Vk(x)]
2)′dx

∣∣,
from (13)-(14), in view of (10)-(11), we get estimates

|Vk(ζr)| ≤
√

2
k3/2 ||fk(x)||L2[0,1], |Vk(ηs)| ≤

√
2

k3/2 ||fk(x)||L2[0,1]. (15)

Hence, ∣∣ℓ[Vk]
∣∣ ≤ ( n∑

r=1

αr +

m∑
s=1

βs

) √
2

k3/2 ||fk(x)||L2[0,1]. (16)

Problem (9) has the solution

Wk(x) = Wk
sinh kx
sinh k

, (17)

where

Wk =
−ℓ[Vk(x)]

1 − (sinh k)−1
( n∑
r=1

αr sinh kζr −
m∑
s=1

βs sinh kηs
) (18)

and since the denominator of the fraction in (18) is nonzero, moreover,

1 − (sinh k)−1
( n∑

r=1

αr sinh kζr −
m∑
s=1

βs sinh kηs
)
> 0. (19)
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Indeed,

1−
n∑

r=1

αr
sinh kζr
sinh k

+
m∑
s=1

βs
sinh kηs
sinh k

≥ 1−sinh kζn
sinh k

n∑
r=1

αr+
sinh kη1

sinh k

m∑
s=1

βs ≥ Sk

for

Sk =



1, if −∞ <
n∑

r=1
αr −

m∑
s=1

βs ≤ 0, ζn < η1;

1 − (
n∑

r=1
αr −

m∑
s=1

βs)
sinh kζn

sinh k , if 0 <
n∑

r=1
αr −

m∑
s=1

βs, ζn < η1;

1 − (
n∑

r=1
αr)

sinh kζn
sinh k , if 0 <

n∑
r=1

αr, ζn > η1.

By virtue of Lemma 1,

1 >
sinh ζn
sinh 1

>
sinh kζn
sinh k

,

then, in view of A, we get that Sk ≥ S0 > 0 for

S0 =



1, when −∞ <
n∑

r=1
αr −

m∑
s=1

βs ≤ 0, ζn < η1,

1 − (
n∑

r=1
αr −

m∑
s=1

βs)
sinh ζn
sinh 1 , when 0 <

n∑
r=1

αr −
m∑
s=1

βs, ζn < η1,

1 − (
n∑

r=1
αr)

sinh ζn
sinh 1 , when 0 <

n∑
r=1

αr, ζn > η1.

Therefore,

1 − (sinh k)−1
( n∑

r=1

αr sinh kζr −
m∑
s=1

βs sinh kηs
)
≥ S0 > 0. (20)

Hence, in view of (16)-(20),

|Wk(1)| ≤ C0

√
2

k3/2 || fk(x)||L2[0,1] (21)

for

C0 =
1
S0

( n∑
r=1

αr +

m∑
s=1

βs

)
.
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Since, in view of (17),

Wk(x) = Wk(1)
sinh kx
sinh k

is the explicit solution of (9), then

||Wk||L2[0,1] ≤ | Wk(1) |
(∫ 1

0 sinh2(kx)dx

sinh2 k

)1/2
, (22)

||W ′
k||L2[0,1] ≤ k | Wk(1) |

(∫ 1
0 cosh2(kx)dx

sinh2 k

)1/2
, (23)

||W ′′
k ||L2[0,1] ≤ k2 | Wk(1) |

(∫ 1
0 sinh2(kx)dx

sinh2 k

)1/2
. (24)

Because ∫ 1
0 sinh2(kx)dx

sinh2 k
≤ 1

k
,

∫ 1
0 cosh2(kx)dx

sinh2 k
≤ 5

2k
,

then, in view of (21), the inequalities (22), (23) and (24) result in

||Wk||L2[0,1] ≤ C0
√

2
1
k2 ||fk||L2[0,1], (25)

||W ′
k||L2[0,1] ≤ C0

√
5

1
k
||fk||L2[0,1], (26)

||W ′′
k ||L2[0,1] ≤ C0

√
2 ||fk||L2[0,1]. (27)

Hence, in view of (10)-(12),

||Uk||L2[0,1] ≤ C1
1
k2 ||fk||L2[0,1], (28)

|| U ′
k||L2[0,1] ≤ C2

1
k
||fk||L2[0,1], (29)

|| U ′′
k ||L2[0,1] ≤ C3 ||fk||L2[0,1], (30)

where C1 = C3 = 1+C0
√

2, C2 = 1+C0
√

5. Therefore, in view of [3, p. 142-
143], we have

∞∑
k=1

1∫
0

U 2
k(x)dx ≤ C2

1 ||f ||2L2(Π),

∞∑
k=1

1∫
0

(
U ′
k(x)

)2
dx ≤ 1

k2 C2
2 ||f ||2L2(Π),
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∞∑
k=1

1∫
0

(
U ′′
k (x)

)2
dx ≤ C2

3 ||f ||2L2(Π),

so that (28)-(30) result [3, p. 142-143] in

||u||W 2
2 (Π) ≤ C1||f ||L2(Π), (31)

||uxx||W 2
2 (Π) ≤ C2||f ||L2(Π), (32)

||uxy||W 2
2 (Π) ≤ C3||f ||L2(Π). (33)

In view of (32), from the equation ∆u(x, y) = f(x, y) we get

||uyy||W 2
2 (Π) ≤ C4||f ||L2(Π). (34)

Finally, a priori estimate (2) results from (31)-(34). Since, the uniqueness of classi-
cal solution follows from (2), then the existence results from Fredholm’s property
[2] which is inherent to the problem (1). Theorem 2.2 is proved.

Corollary 2.3. Let f ∈ C(Π), n = m and ζr < ηr , r = 1, ..., n. If

n∑
r=1

(αr − βr) + |αr − βr|
2

= 0,

or if

0 <

n∑
r=1

(αr − βr) + |αr − βr|
2

<
sinh 1
sinh ζp

(35)

for p ≤ n, so that (αp−βp)+|αp−βp|
2 > 0, but (αp+i−βp+i)+|αp+i−βp+i|

2 = 0 for
1 < i ≤ n − p (if such i does not exists we put p = n), then classical solution
of (1) exists, is a unique and holds a priori estimate (2).

Proof. In view of (3)-(7), we find that Uk(x) satisfies the multipoint problem (5){
L[Uk(x)] = fk(x), 0 < x < 1,
Uk(0) = 0, ℓ[Uk] = 0,

where

ℓ[Uk] ≡ Uk(1)−
n∑

r=1

(αrUk(ζr)− βrUk(ηr)). (36)
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Put Uk(x) = Vk(x) + Wk(x), where Vk(x) is the solution of (8), Wk(x) is
the solution of (9). Similar to the proof of Theorem 2.2, estimates (10)-(12) hold,
then estimates (13)-(15) hold for r = s. Hence, in view of (15),∣∣ℓ[Vk]

∣∣ ≤ ( n∑
r=1

(αr + βr)
) √

2
k3/2 ||fk(x)||L2[0,1]. (37)

In view of (17)-(18),

Wk =
−ℓ[Vk]

1 − (sinh k)−1
n∑

r=1
(αr sinh kζr − βr sinh kηr)

. (38)

Noting that the denominator of the fraction Wk is nonzero, we have

1 −

n∑
r=1

(αr sinh kζr − βr sinh kηr)

sinh k
≥ 1 −

n∑
r=1

(αr − βr) sinh kζr

sinh k
≥ Sk

for

Sk =


1, if

n∑
r=1

(αr−βr)+|αr−βr|
2 = 0,

1 −
( n∑
r=1

(αr−βr)+|αr−βr|
2

) sinh kζp
sinh k , if

n∑
r=1

(αr−βr)+|αr−βr|
2 > 0.

By virtue of Lemma 2.1,

1 >
sinh ζp
sinh 1

>
sinh kζp
sinh k

,

and then Sk ≥ S0 for

S0 =


1, if

n∑
r=1

(αr−βr)+|αr−βr|
2 = 0,

1 −
( n∑
r=1

(αr−βr)+|αr−βr|
2

) sinh ζp
sinh 1 , if

n∑
r=1

(αr−βr)+|αr−βr|
2 > 0.

(39)

In view of corollary conditions, Sk ≥ S0 > 0. Therefore,

1 − (sinh k)−1
n∑

r=1

(αr sinh kζr − βr sinh kηr) ≥ S0 > 0.

Hence, in view of (17) and (36)-(39),

|Wk(1)| ≤

n∑
r=1

(αr + βr)

S0

√
2

k3/2 ||fk(x)||L2[0,1],
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i.e., (21) holds for C0 = S−1
0

n∑
r=1

(αr + βr). Then (22)-(34) hold similarly as

in Theorem 2.2. Finally, a priori estimate (2) results from (31)-(34). Since the
uniqueness of classical solution follows from (2), then the existence results from
Fredholm’s property [2] which is inherent to the problem (1). Corollary 2.3 is
proved.

Note 2.1. To prove Theorem 2.2 and Corollary 2.3, the fulfillment of condition
A and (35) is required correspondingly. Obviously, these conditions cover the
condition S ≤ 1, where

S =



n∑
r=1

αr −
m∑
s=1

βs if ζn < η1,

n∑
r=1

αr if ζn > η1,

n∑
r=1

(αr−βr)+|αr−βr|
2 .

The condition S ≤ 1 was required (see [16, p. 39-44]) to prove the well-
posedness of NLBVP (1). Obviously, irrespective of ζn and ζp location,
this result also follows from Theorem 2.2 and Corollary 2.3 correspondingly. In
addition, for any value S > 1, by virtue of Theorem 2.2, we can define an open
interval for the location of ζn, i.e.,

0 < ζn < arsinh
(
S−1 sinh 1

)
,

so that the NLBVP (1) remains well-posed. Similarly, by virtue of Corollary 2.3,
for any S > 1 we can define an interval for ζp, i.e.,

0 < ζp < arsinh
(
S−1 sinh 1

)
,

so that the NLBVP (1) remains well-posed.
Note 2.2. Actually, the requirement A, as well the condition (35), reveals the
unboundedness effect, i.e., the corresponding value S could be an arbitrarily large
positive real number that depends on ζn → 0, or on ζp → 0, correspondingly,
but nevertheless the NLBVP (1) remains well-posed.
Note 2.3. By virtue of Theorem 2.2, we can improve the condition of well-posed
solvability for formulated in [3, p. 140] NLBVP (1) and write it as following:

m∑
k=1

α+
k <

sinh 1
sinh ξp

,

where α+
k = 2−1(αk + |αk|) and p is the largest subindex of ξk, k = 1, ...,m,

so that αp > 0 (we assume that there is at least one αk, k = 1, ...,m which has
positive value), but αp+i ≤ 0, 1 < i ≤ n− p (p = n if such i does not exists).
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3 Difference problem

We consider difference interpretation of NLBVP (1)

ΛY = Yx̄x + Yȳy = f(x, y), (xi, yj) ∈ Π,

Y |y=0 = Y |y=π = 0, xi ∈ [0, 1) , Y |x=0 = 0, yj ∈ [0, π] ,

LY =
n∑

r=1
αr

(
Yiζr ,j

[(iζr+1)h1−ζr ]
h1

+ Yiζr+1,j
[ζr−iζrh1]

h1

)
−

−
m∑
s=1

βs

(
Yiηs ,j

[(iηs+1)h1−ηs]
h1

+ Yiηs+1,j
[ηs−iηsh1]

h1

)
− YN1,j = 0,

j = 1, ..., N2 − 1,

(40)

where same as in the differential problem we require 0 < ζ1 < ... < ζn < 1,
0 < η1 < ... < ηm < 1, ζr ̸= ηs, αr > 0, βs > 0, r = 1, ..., n, s =
1, ...,m, and additionally, we define the numbers iζr and iηs by corresponding
inequalities iζrh1 ≤ ζr < (iζr + 1)h1 for r = 1, ..., n and iηsh1 ≤ ηs <
(iηs + 1)h1 for s = 1, ...,m, at least we put ζ0 = η0 = 0, ζn+1 = ηm+1 = 1,
h1 = 1/N1, h2 = π/N2 and require h1 ≤ c0h2, c0 = const add h1 < θ,
θ = 1

2 min{ζr+1 − ζr, r = 0, 1, ..., n; ηs+1 − ηs, s = 0, 1, ...,m; |ζr − ηs|, r =
1, ..., n, s = 1, ...,m}.
Let A denotes the condition:

−∞ <

n∑
r=1

αr −
m∑
s=1

βs <
(
1 +

4
π

)1−ζn−θ when ζn < η1,

n∑
r=1

αr <
(
1 +

4
π

)1−ζn−θ when ζn > η1.

Theorem 3.1. Let f(x, y) so that u(x, y) ∈ C(4)(Π) is a solution of NLBVP (1)
when the condition A holds. If, additionally, the condition A holds too, then
difference solution of (40) approximates u(x, y) by the second order of accuracy

in terms of h =
√

h2
1 + h2

2, h2 → 0 in each of the difference metrics C, W 2
2 .

Proof. We denote z = Y − u, then z satisfies the difference problem{
Λz = f − Λu = F, (ih1, jh2) ∈ Π,

z|x=0 = z|y=0 = z|y=π = 0, Lz = −Lu.
(41)

For this problem F = O(h2) and Lu = O(h2) [10, p. 81, 229]. Put z = z̃+ ẑ,
where z̃ is the solution of{

Λz̃ = 0, (ih1, jh2) ∈ Π,

z̃|x=0 = z̃|y=0 = z̃|y=π = 0, Lz̃ = −Lu,
(42)
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and ẑ is the solution of{
Λẑ = F, (ih1, jh2) ∈ Π,

ẑ|x=0 = ẑ|y=0 = ẑ|y=π = 0, Lẑ = 0.
(43)

Further, to estimate z̃ we use [10, p. 113] the orthogonal system of mesh functions
{sin(ky)}|k=N2−1

k=1 , so that from the representation

z̃ =

N2−1∑
k=1

z̃k sin(ky), y = jh2, j = 0, 1, ..., N2

it follows, that z̃k, k = 1, ..., N2 − 1 is the difference solution of the problem{
Λ1z̃k − λkz̃k = 0,
z̃k|x=0 = 0, Lz̃k = −Qk ,

(44)

where Λ1z̃ = z̃x̄x, λk = 4h−2
2 sin2(kh2), Qk = (Lu)k and, in view of

[3, p. 142-143],
z̃k|xi=ih1 = Ak sinh(i ln qk),

Ak = −Qk/L[sinh(i ln qk)], i = 0, ..., N1,

qk = 1 + λkh
2
1/2 +

√
λkh

2
1 + λ2

kh
4
1/4.

Denote D = L[sinh(i ln qk)]. By acting L on sinh(i ln qk) in the denominator
of the fraction for Ak , we get

−D ≥ sinh(N1 ln qk)−
n∑

r=1

αr sinh((iζn +1) ln qk)+
m∑
s=1

βs sinh(iη1 ln qk). (45)

Hence,
−D ≥ sinh(N1 ln qk)− S sinh((iζn + 1) ln qk) (46)

for

S =



0, if −∞ <
n∑

r=1
αr −

m∑
s=1

βs ≤ 0, ζn < η1,

n∑
r=1

αr −
m∑
s=1

βs, if 0 <
n∑

r=1
αr −

m∑
s=1

βs, ζn < η1,

n∑
r=1

αr, if ζn > η1.

Then

−D ≥ sinh(N1 ln qk)
[
1 − S

sinh(iζn + 1) ln qk)
sinh(N1 ln qk)

]
, (47)
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therefore,

−D ≥ sinh(N1 ln qk)
[
1 − S

q
iζn+1
k − q

−(iζn+1)
k

qN1
k − q−N1

k

]
.

Since qk ≥ 1, we get

q
iζn+1
k − q

−(iζn+1)
k

qN1
k − q−N1

k

≤
q
iζn+1
k [1 − q

−2(iζn+1)
k ]

qN1
k [1 − q−2N1

k ]
≤

q
iζn+1
k

qN1
k

.

Since h1 < θ for θ = 1
2 min{ζr+1 − ζr, r = 0, n, ηs+1 − ηs, s = 0,m}, for

specified δ = 1 − ζn − θ the inequality ζn + h1 ≤ 1 − δ holds. Hence,
iζn + 1 ≤ h−1

1 (1 − δ). Then

q
iζn+1
k − q

−(iζn+1)
k

qN1
k − q−N1

k

≤
q
N1(1−δ)
k

qN1
k

≤ 1

qN1δ
k

. (48)

Therefore,

−D ≥
(

1 − S
1

qN1δ
k

)
sinh(N1 ln qk). (49)

Since

qN1
k ≥ (1 +

√
λkh1)

N1 ≥ (1 +
√

λ1h1)
N1 ≥ (1 +

√
λ1) ≥ 1 +

4
π
, (50)

we have
−D ≥

[
1 − S

1
(1 + 4/π)δ

]
sinh(N1 ln qk), (51)

so that
−D ≥ C sinh(N1 ln qk) (52)

for

C =



1, if −∞ <
n∑

r=1
αr −

m∑
s=1

βs ≤ 0, ζn < η1,

1 −
(
1 + 4/π

)−δ( n∑
r=1

αr −
m∑
s=1

βs
)
, if 0 <

n∑
r=1

αr −
m∑
s=1

βs, ζn < η1,

1 −
(
1 + 4/π

)−δ
n∑

r=1
αr, if ζn > η1.

In summary, since the condition A holds,

−L[sinh(i ln qk)] ≥ C sinh(N1 ln qk) > 0. (53)



Nonlocal boundary value problem for Poisson’s operator on rectangle 25

Finally, in view of (53), by virtue of [3, 150-151], we obtain the estimates

max
i,j

|z̃ij | = O(h2), ||z̃||W 2
2
= O(h2), max

i,j
|ẑij | = O(h2), ||ẑ||W 2

2
= O(h2).

Therefore, maxi,j |zij | = O(h2), ||z||W 2
2
= O(h2). Theorem 3.1 is proved.

Corollary 3.2. Let n = m, ζr < ηr, r = 1, ..., n. Let f(x, y) and so that
u(x, y) ∈ C(4)(Π) is a solution of NLBVP (1) when condition (35) holds for

2−1
n∑

r=1

(
αr − βr + |αr − βr|

)
> 0. If

0 <

n∑
r=1

(αr − βr) + |αr − βr|
2

<
(
1 +

4
π

)1−ζp−θ (54)

for 1 ≤ p ≤ n, so that (αp−βp)+|αp−βp|
2 > 0, but (αp+i−βp+i)+|αp+i−βp+i|

2 = 0
for all 1 < i ≤ n − p (if such i does not exist, we put p = n), then difference
solution of (40) approximates u(x, y) by the second order of accuracy in terms

of h =
√

h2
1 + h2

2, h2 → 0 in each of the difference metrics C, W 2
2 .

Proof. In view of (41)-(45), for D = L[sinh(i ln qk)] we obtain the inequality

−D ≥ sinh(N1 ln qk)−
n∑

r=1

αr sinh((iζr + 1) ln qk) +
n∑

r=1

βr sinh(iηr ln qk).

Since iζr + 1 < iηr , r = 1, n, we get

−D ≥ sinh(N1 ln qk)−
n∑

r=1

(αr − βr) sinh((iζr + 1) ln qk).

Hence,

−D ≥
[
1 −

n∑
r=1

(αr − βr)
(qiζr+1

k − q
−(iζr+1)
k

qN1
k − q−N1

k

)]
sinh(N1 ln qk).

Also,

−D ≥
[
1 − S

q
iζp+1
k − q

−(iζp+1)
k

qN1
k − q−N1

k

]
sinh(N1 ln qk) (55)

for

S =

n∑
r=1

(αr − βr) + |αr − βr|
2

.
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By analogy with (48), for qk ≥ 1 and δ = 1 − ζp − θ , we get

q
iζp+1
k − q

−(iζp+1)
k

qN1
k − q−N1

k

≤ 1

qN1δ
k

(56)

since the inequalities ζp + h1 ≤ 1 − δ and iζp + 1 ≤ h−1
1 (1 − δ) hold. In view

of (50) and (55)-(56), the analogies of (51)-(53) hold for

C = 1 −
(
1 + 4/π

)−δ( n∑
r=1

(αr − βr) + |αr − βr|
2

)
.

In view of (53), similar to Theorem 3.1, we obtain

max
i,j

|z̃ij | = O(h2), ||z̃||W 2
2
= O(h2), max

i,j
|ẑij | = O(h2), ||ẑ||W 2

2
= O(h2),

and therefore, maxi,j |zij | = O(h2), ||z||W 2
2
= O(h2). Corollary 3.2 is proved.

4 Conclusion

In this paper we used an approach which is based on modified methods of papers
[3] and [16].

The basic result of our paper demonstrates new conditions on the well-posedness
of NLBVP (1) (see Theorem 2.2 and Corollary 2.3). The newness of the condition
A and (35) is shown in Note 2.1. As it is shown in Note 2.2, condition A, as
well as the requirement (35), reveals the unboundedness effect for the value S,
which is specified by corresponding values of the coefficients in NLBVC of the
differential problem (1).

The difference interpretation of NLBVP (1) is proposed by the finite-difference
scheme (40). In Theorem 3.1, under the condition A, and in Corollary 3.2 under
the requirement (54), correspondingly, we proved the second order of accuracy
approximation for smooth classical solution of NLBVP (1) on a uniform grid with
sufficiently small step. The required new condition A and the inequality (54)
covers the condition S ≤ 1 which was used by the author earlier in the paper
[16, p. 45-48] to obtain the second order of accuracy approximation.

The author would like to thank Prof. Dr. A. Ashyralyev for his attention to the
author’s preliminary result [15] which preacted this paper’s research.
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