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1 Introduction

We recall that a function M : (0,∞) → (0,∞) is called a mean function if it has

(i) Symmetry: M (x, y) = M (y, x);

(ii) Reflexivity: M (x, x) = x;

(iii) Monotonicity: min{x, y} ≤ M (x, y) ≤ max{x, y};

(iv) Homogeneity: M (λx, λy) = λM (x, y), for any positive scalar λ.

The most famous and old known mathematical means are listed as follows:

(i) The arithmetic mean :

A := A (α, β) =
α+ β

2
, α, β ∈ R+.

(ii) The geometric mean :

G := G (α, β) =
√

αβ, α, β ∈ R+

(iii) The harmonic mean :

H := H (α, β) =
2

1
α + 1

β

, α, β ∈ R+ − {0} .
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In particular, we have the famous inequality H ≤ G ≤ A.
In 2007, Anderson et.al. in [2] developed a systematic study to the classical

theory of continuous and midconvex functions, by replacing a given mean instead
of the arithmetic mean.

Definition 1.1. Let f : I → (0,∞) be a continuous function where I ⊆ (0,∞).
Let M and N be any two mean functions. We say f is MN-convex (concave) if

f (M (x, y)) ≤ (≥)N (f(x), f(y)) , (1)

for all x, y ∈ I and t ∈ [0, 1].

In fact, the authors in [2] discussed the midconvexity of positive continuous
real functions according to some means. Hence, the usual midconvexity is a spe-
cial case when both mean values are arithmetic means. Also, they studied the
dependence of MN-convexity on M and N and give sufficient conditions for MN-
convexity of functions defined by Maclaurin series. For other works regarding
MN-convexity, see [15, 16].

The class of h-convex functions, which generalizes convex, s-convex (denoted
by K2

s , [4–6, 11]), Godunova-Levin functions (denoted by Q(I), [10]) and P -
functions (denoted by P (I), [18]), was introduced by Varošanec in [26]. Namely,
the h-convex function is defined as a nonnegative function f : I → R which
satisfies

f (tα+ (1 − t)β) ≤ h (t) f (α) + h (1 − t) f (β) ,

where h is a nonnegative function, t ∈ (0, 1) ⊆ J and x, y ∈ I , where I and J
are real intervals such that (0, 1) ⊆ J . Accordingly, some properties of h-convex
functions were discussed in the same work of Varošanec.

Let h : J → (0,∞) be a nonnegative function. Define the function M : [0, 1] →
[a, b] given by M (t) = M (t; a, b); where by M (t; a, b) we mean one of the fol-
lowing functions:

(i) Ah (a, b) := h (1 − t) a+ h (t) b, the generalized arithmetic mean;

(ii) Gh (a, b) = ah(1−t)bh(t), the generalized geometric mean;

(iii) Hh (a, b) := ab
h(t)a+h(1−t)b = 1

Ah( 1
a
, 1
b)
, the generalized harmonic mean.
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Note that M (h (0) ; a, b) = a and M (h (1) ; a, b) = b. Clearly, for h(t) = t with
t = 1

2 , the means A 1
2
, G 1

2
and H 1

2
, respectively; represents the midpoint of the At,

Gt and Ht, respectively; which was discussed in [2] in viewing of Definition 1.1.
For h(t) = t, we note that the above means are related with celebrated AM-

GM-HM inequality

Ht (a, b) ≤ Gt (a, b) ≤ At (a, b) , ∀ t ∈ [0, 1].

Indeed, one can easily prove more general form of the above inequality; that is if
h is positive increasing on [0, 1] then the generalized AM-GM-HM inequality is
given by

Hh (a, b) ≤ Gh (a, b) ≤ Ah (a, b) , ∀ t ∈ [0, 1] and a, b > 0. (2)

The Definition 1.1 can be extended according to the defined mean M (t; a, b),
as follows: Let f : I → (0,∞) be any function. Let M and N be any two mean
functions. We say f is MN-convex (concave) if

f (M (t;x, y)) ≤ (≥)N (t; f(x), f(y)) ,

for all x, y ∈ I and t ∈ [0, 1].
More generally, we introduce the class of MtNh-convex functions by generaliz-

ing the concept of MtNt-convexity and combining it with h-convexity [1].

Definition 1.2. Let h : J → (0,∞) be a nonnegative function. Let f : I → (0,∞)
be any function. Let M : [0, 1] → [a, b] and N : (0,∞) → (0,∞) be any two
mean functions. We say f is h-MN-convex (-concave) or that f belongs to the
class MN (h, I) (MN (h, I)) if

f (M (t;x, y)) ≤ (≥)N (h(t); f(x), f(y)) , (3)

for all x, y ∈ I and t ∈ [0, 1].

Clearly, if M (t;x, y) = At (x, y) = N (t;x, y), then Definition 1.2 reduces to
the original concept of h-convexity. Also, if we assume f is continuous, h(t) = t
and t = 1

2 in (3), then the Definition 1.2 reduces to the Definition 1.1.
The cases of h-MN-convexity are given with respect to a certain mean, as fol-

lows:

(i) f is AtGh-convex iff

f (tα+ (1 − t)β) ≤ [f (α)]h(t) [f (β)]h(1−t) , 0 ≤ t ≤ 1; (4)
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(ii) f is AtHh-convex iff

f (tα+ (1 − t)β) ≤ f (α) f (β)

h (1 − t) f (α) + h (t) f (β)
, 0 ≤ t ≤ 1; (5)

(iii) f is GtAh-convex iff

f
(
αtβ1−t

)
≤ h (t) f (α) + h (1 − t) f (β) , 0 ≤ t ≤ 1; (6)

(iv) f is GtGh-convex iff

f
(
αtβ1−t

)
≤ [f (α)]h(t) [f (β)]h(1−t) , 0 ≤ t ≤ 1; (7)

(v) f is GtHh-convex iff

f
(
αtβ1−t

)
≤ f (α) f (β)

h (1 − t) f (α) + h (t) f (β)
, 0 ≤ t ≤ 1; (8)

(vi) f is HtAh-convex iff

f

(
αβ

tα+ (1 − t)β

)
≤ h (1 − t) f (α) + h (t) f (β) , 0 ≤ t ≤ 1; (9)

(vii) f is HtGh-convex iff

f

(
αβ

tα+ (1 − t)β

)
≤ [f (α)]h(1−t) [f (β)]h(t) , 0 ≤ t ≤ 1; (10)

(viii) f is HtHh-convex iff

f

(
αβ

tα+ (1 − t)β

)
≤ f (α) f (β)

h (t) f (α) + h (1 − t) f (β)
, 0 ≤ t ≤ 1. (11)

Remark 1.3. In all previous cases, h(t) and h(1 − t) are not equal to zero at the
same time. Therefore, if h(0) = 0 and h(1) = 1, then a mean function N satisfy-
ing the conditions N (h (0) , f (x) , f (y)) = f (x) and N (h (1) , f (x) , f (y)) =
f (y).

Remark 1.4. According to the Definition 1.2, we may extend the classes Q(I), P (I)
and K2

s by replacing the arithmetic mean by another given one. Let M : [0, 1] →
[a, b] and N : (0,∞) → (0,∞) be any two mean functions.
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(i) Let s ∈ (0, 1], a function f : I → (0,∞) is MtNts-convex function or that f
belongs to the class K2

s (I; Mt,Nts) if for all x, y ∈ I and t ∈ [0, 1] we have

f (M (t;x, y)) ≤ N (ts; f(x), f(y)) . (12)

(ii) We say that f : I → (0,∞) is an extended Godunova-Levin function or that
f belongs to the class Q

(
I; Mt,N1/t

)
if for all x, y ∈ I and t ∈ (0, 1) we

have

f (M (t;x, y)) ≤ N
(

1
t

; f(x), f(y)
)
. (13)

(iii) We say that f : I → (0,∞) is P -MtNt=1-function or that f belongs to the
class P (I; Mt,N1) if for all x, y ∈ I and t ∈ [0, 1] we have

f (M (t;x, y)) ≤ N (1; f(x), f(y)) . (14)

In (12)–(14), setting M (t;x, y) = At (x, y) = N (t;x, y), we then refer to
the original definitions of these class of convexities.

Remark 1.5. Let h be a nonnegative function such that h (t) ≥ t for t ∈ (0, 1).
For instance hr (t) = tr, t ∈ (0, 1) has that property. In particular, for r ≤ 1, if f
is a nonnegative MtNt-convex function on I , then for x, y ∈ I , t ∈ (0, 1) we have

f (M (t;x, y)) ≤ N (t; f(x), f(y)) ≤ N (tr; f(x), f(y)) = N (h (t) ; f(x), f(y)) ,

for all r ≤ 1 and t ∈ (0, 1). So that f is MtNh-convex. Similarly, if the function
satisfies the property h (t) ≤ t for t ∈ (0, 1), then f is a nonnegative MtNh-
concave. In particular, for r ≥ 1, the function hr(t) has that property for t ∈ (0, 1).
So that if f is a nonnegative MtNt-concave function on I , then for x, y ∈ I ,
t ∈ (0, 1) we have

f (M (t;x, y)) ≥ N (t; f(x), f(y)) ≥ N (tr; f(x), f(y)) = N (h (t) ; f(x), f(y)) ,

for all r ≥ 1 and t ∈ (0, 1), which means that f is MtNh-concave.

As known, it is not easy to determine whether a given function is convex or
not. Because of that, Jensen in [12] proved his famous characterization of convex
functions. Simply, for a continuous functions f defined on a real interval I , f is
convex if and only if

f

(
x+ y

2

)
≤ f (x) + f (y)

2
,

for all x, y ∈ I .
In 1965, another characterization was presented by Popoviciu [20], where he

proved the following theorem.
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Theorem 1.6. Let f : I → R be continuous. Then, f is convex if and only if

2
3

[
f

(
x+ z

2

)
+ f

(
y + z

2

)
+ f

(
x+ y

2

)]
≤ f

(
x+ y + z

3

)
+

f (x) + f (y) + f (z)

3
, (15)

for all x, y, z ∈ I , and the equality occurred by f(x) = x, x ∈ I .

The corresponding version of Popoviciu inequality for GtGt-convex (concave)
function was presented in [15], where he proved that for all x, y, z ∈ I the inequal-
ity

f2 (√xz
)
f2 (

√
yz) f2 (

√
xy) ≤ (≥)f3 ( 3

√
xyz) f (x) f (y) f (z) , (16)

holds.
One of the most applicable benefits of Popoviciu’s inequality is to maximize

and/or minimize a given function (or certain real quantities) without using deriva-
tives, so that such type of inequalities plays an important role in optimizations
and approximations. Another serious usefulness is to generalize some old famous
inequalities, e.g., the Popoviciu’s inequality can be considered as an elegant gen-
eralization of Hlawka’s inequality using convexity as a simple tool of geometry.
For any real numbers x, y, z, the Hlawka’s inequality reads:

|x|+ |y|+ |z|+ |x+ y + z| ≥ |x+ z|+ |z + y|+ |x+ y| . (17)

D. Smiley & M. Smiley [28] (see also [23], p. 756), interpreted Hlawka’s inequal-
ity geometrically by saying that: “the total length over all sums of pairs from three
vectors is not greater than the perimeter of the quadrilateral defined by the three
vectors.” For recent comprehensive history regarding Hlawka’s inequality see [8].
It’s convenient to note that, a normed linear space for which inequality (17) holds
for all x, y, z is called a Hlawka space or quadrilateral space, see [24, 25] (also
[23]). For instance, each inner product space is a Hlawka space [14].

The extended version of Popoviciu’s inequality to several variables was not pos-
sible without the help of Hlawka’s inequality, as it inspired the authors of [3] to de-
velop a higher dimensional analogue of Popoviciu’s inequality based on his char-
acterization. Interesting generalizations and counterparts of Popoviciu inequality
with some ramified consequences can be found in [9, 27].

Therefore, as Popoviciu’s inequality one of the most popular generalization of
Hlawka’s inequality, and due to its important usefulness, in this work we establish
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the corresponding Popoviciu type inequalities according to a given mean used in-
stead of the arithmetic mean. Namely, for h-AN-convex functions several inequal-
ities of Popoviciu type are proved. In this way, we extend Hlawka’s inequality
based on the geometric structure used under an h-AN-convex mappings.

2 Popoviciu type inequalities for h-AN-convex functions

After focus consideration we find that, there is neither nonnegative 1
t -MtAt-concave

nor 1
t -MtHt–convex functions, where Mt = At, Gt,Ht. The same observation

holds for h (t) = tk, k ≤ −1, t ∈ (0, 1).
To see how this holds, suppose on the contrary that there is a nonnegative func-

tion f which is MtA1/t-concave on I . Thus, for means Mt and At, the reverse
inequality of (13) holds for all x, y ∈ I and t ∈ (0, 1).

f (M (t;x, y)) ≥ 1
1 − t

f (x) +
1
t
f (y) .

Since Mt (x, x) = x, so by setting x = y we have

f (x) ≥ 1
1 − t

f (x) +
1
t
f (x) =

1
t (1 − t)

f (x) ,

which is equivalent to write
(
t− t2 − 1

)
f (x) ≥ 0, ∀t ∈ (0, 1). But since f is

nonnegative we must have t− t2 − 1 ≥ 0, 0 < t < 1 which is impossible and thus
we got a contradiction. Hence, we must have f (x) ≤ 0.

In case when f is nonnegative MtH1/t–convex function, then

f (M (t;x, y)) ≤ t (1 − t) f (x) f (y)

tf (x) + (1 − t) f (y)
,

and setting x = y we have

f (x) ≤ t (1 − t) f (x) ,

and this is equivalent to write (t (1 − t)− 1) f (x) ≥ 0, since f is nonnegative we
must have t (1 − t)−1 ≥ 0 which impossible for t ∈ (0, 1), which contradicts the
nonnegativity assumption of f . Hence, f ≤ 0.

Remark 2.1. There are neither nonnegative MtA1-concave nor MtH1-convex func-
tions, where Mt = At, Gt,Ht. The proof is simpler than that ones given above.

According to the previous discussion, we need to extend classes Q
(
I; Mt,A1/t

)
,

Q
(
I; Mt,H1/t

)
, P (I; Mt,A1), and P (I; Mt,H1). Consequently, we say that a

function f : I → R
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(i) is MtA1/t-concave, if −f ∈ Q
(
I; Mt,A1/t

)
, i.e.,

f (M (t;x, y)) ≥ 1
1 − t

f (x) +
1
t
f (y) ,

for all x, y ∈ I and t ∈ (0, 1),

(ii) is MtH1/t-convex, if −f ∈ Q
(
I; Mt,H1/t

)
, i.e.,

f (M (t;x, y)) ≥ t (1 − t) f (x) f (y)

tf (x) + (1 − t) f (y)
,

for all x, y ∈ I and t ∈ (0, 1),

(iii) is MtA1-concave, if −f ∈ P (I; Mt,A1), i.e.,

f (M (t;x, y)) ≥ f (x) + f (y)

for all x, y ∈ I and t ∈ (0, 1),

(iv) is MtH1-concave, if −f ∈ P (I; Mt,H1), i.e.,

f (M (t;x, y)) ≥ f (x) f (y)

f (x) + f (y)
,

for all x, y ∈ I and t ∈ (0, 1).

In the same way, there is no MtG1/t-concave function satisfies f (x) > 1. To
support this assertion, assume there exists MtG1/t-concave function, so that for
means Mt and Gt, the reverse inequality of (13) holds for all x, y ∈ I and t ∈
(0, 1).

f (M (t;x, y)) ≥ [f (x)]
1

1−t [f (y)]
1
t ,

since Mt (x, x) = x, so by setting x = y we have

f (x) ≥ [f (x)]
1

1−t
+ 1

t ,

since f (x) > 1 and t ∈ (0, 1) then we must have 1
1−t +

1
t ≤ 1 which is equivalent

to write 1 ≤ t (1 − t) for all t ∈ (0, 1) and this is impossible, thus we have a
contradiction. Hence, we must have 0 ≤ f (x) ≤ 1.



56 M. W. Alomari

Remark 2.2. There is no 1-MtGt-concave function satisfies f (x) > 1. The proof
is simpler than that ones given above.

A function h : I → R is said to be

(i) additive if h (s+ t) = h (s) + h (t),

(ii) subadditive if h (s+ t) ≤ h (s) + h (t),

(iii) superadditive if h (s+ t) ≥ h (s) + h (t),

for all s, t ∈ I . For example, let h : I → (0,∞) given by h (x) = xk, x > 0.
Then h is

(i) additive if k = 1,

(ii) subadditive if k ∈ (−∞,−1] ∪ [0, 1),

(iii) superadditive if k ∈ (−1, 0) ∪ (1,∞).

We note here, in all next results and for the classes MtA1/t-concave, MtG1/t-
concave, MtH1/t-convex , MtA1-concave, and MtH1-convex functions, f is defined
to be f : I → R, I ⊆ (0,∞).

2.1 The case when f is h-AA-convex

Now, we are ready to state our first main result.

Theorem 2.3. Let h : I → (0,∞) be a nonnegative super(sub)additive function.
If f : I → (0,∞) be an AtAh-convex (concave) function, then

f

(
x+ z

2

)
+ f

(
y + z

2

)
+ f

(
x+ y

2

)
≤ (≥)h (3/2) f

(
x+ y + z

3

)
+ h (1/2) [f (x) + f (y) + f (z)] , (18)

for all x, y, z ∈ I .

Proof. f is AtAh-convex iff the inequality

f (tα+ (1 − t)β) ≤ h (t) f (α) + h (1 − t) f (β) , 0 ≤ t ≤ 1

holds for all α, β ∈ I . Assume that x ≤ y ≤ z. If y ≤ x+y+z
3 , then

x+ y + z

3
≤ x+ z

2
≤ z and

x+ y + z

3
≤ y + z

2
≤ z,
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so that there exist two numbers s, t ∈ [0, 1] satisfying

x+ z

2
= s

(
x+ y + z

3

)
+ (1 − s) z,

and

y + z

2
= t

(
x+ y + z

3

)
+ (1 − t) z.

Summing up, we get (x+ y − 2z)
(
s+ t− 3

2

)
= 0. If x + y − 2z = 0, then

x = y = z, and Popoviciu’s inequality holds.
If s+ t = 3

2 , then since f is AtAh-convex, we have

f

(
x+ z

2

)
= f

[
s

(
x+ y + z

3

)
+ (1 − s) z

]
≤ h (s) f

(
x+ y + z

3

)
+ h (1 − s) f (z) ,

f

(
y + z

2

)
= f

[
t

(
x+ y + z

3

)
+ (1 − t) z

]
≤ h (t) f

(
x+ y + z

3

)
+ h (1 − t) f (z) ,

and

f

(
x+ y

2

)
≤ h (1/2) [f (x) + f (y)] .

Summing up these inequalities taking into account that h is superadditive we get

f

(
x+ z

2

)
+ f

(
y + z

2

)
+ f

(
x+ y

2

)
≤ h (s) f

(
x+ y + z

3

)
+ h (1 − s) f (z) + h (t) f

(
x+ y + z

3

)
+ h (1 − t) f (z) + h (1/2) [f (x) + f (y)]

= [h (s) + h (t)] f

(
x+ y + z

3

)
+ [h (1 − s) + h (1 − t)] f (z)

+ h (1/2) [f (x) + f (y)]

≤ h (s+ t) f

(
x+ y + z

3

)
+ h (2 − s− t) f (z) + h (1/2) [f (x) + f (y)]
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= h (3/2) f
(
x+ y + z

3

)
+ h (1/2) f (z) + h (1/2) [f (x) + f (y)]

= h (3/2) f
(
x+ y + z

3

)
+ h (1/2) [f (x) + f (y) + f (z)] ,

as desired.

Remark 2.4. In (18), setting z = y, we have

2f
(
x+ y

2

)
+ f (y) ≤ (≥)h (3/2) f

(
x+ 2y

3

)
+ h (1/2) [f (x) + 2f (y)] .

for all x, y ∈ I .

Remark 2.5. In (18), setting z = y, we get

2f
(
x+ y

2

)
+ f (y) ≤ (≥)h (3/2) f

(
x+ 2y

3

)
+ h (1/2) [f (x) + 2f (y)] ,

for all x, y ∈ I .

Corollary 2.6. Let h : I → (0,∞) be a nonnegative super(sub)additive function.
If f : I → (0,∞) be an AtAt-convex (concave) function, then

2
3

[
f

(
x+ z

2

)
+ f

(
y + z

2

)
+ f

(
x+ y

2

)]
≤ (≥) f

(
x+ y + z

3

)
+

f (x) + f (y) + f (z)

3
,

for all x, y, z ∈ I . The equality holds when f is affine.

Example 2.7. (i) Let f (x) = xp, p ≥ 1 then f is AtAt-convex for all x > 0.
Applying Corollary 2.6, we get

2
3

[(
x+ z

2

)p

+

(
y + z

2

)p

+

(
x+ y

2

)p]
≤
(
x+ y + z

3

)p

+
xp + yp + zp

3
,

for all x, y, z > 0.
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(ii) Let f (x) = − logx, then f is AtAt-convex for all 0 < x < 1. Applying
Corollary 2.6, we get

(x+ z)2 (y + z)2 (x+ y)2 ≥ 64
27

(x+ y + z)3 (xyz) ,

for all 1 > x, y, z > 0.

Corollary 2.8. If f : I → R be an AtA1/t-concave function, then

3
2

[
f

(
x+ z

2

)
+ f

(
y + z

2

)
+ f

(
x+ y

2

)]
≤ (≥) f

(
x+ y + z

3

)
+ 3 [f (x) + f (y) + f (z)] ,

for all x, y, z ∈ I .

Example 2.9. Let f (x) = logx, then f is an AtA1/t-concave for 0 < x < 1.
Applying Corollary 2.8, we get

(x+ z)3 (y + z)3 (x+ y)3 ≥ 512
9

(x+ y + z)2 (xyz)6 ,

for all 0 < x, y, z < 1.

Corollary 2.10. If f : I → R be an AtA1-concave function, then

f

(
x+ z

2

)
+ f

(
y + z

2

)
+ f

(
x+ y

2

)
≤ (≥) f

(
x+ y + z

3

)
+ f (x) + f (y) + f (z) ,

for all x, y, z ∈ I .

Example 2.11. Let f (x) = logx, which is a nonnegative AtA1-concave for all
0 < x < 1. Applying Corollary 2.10, we get

(x+ z) (y + z) (x+ y) ≥ 8
3
(x+ y + z) (xyz) ,

for all 0 < x, y, z < 1.

Corollary 2.12. In Theorem 2.3.
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(i) If h : J → (0,∞) is a nonnegative superadditive and f : I → (0,∞) is an
AtAh-convex and subadditive, then

f (x+ y + z) ≤ f

(
x+ z

2

)
+ f

(
y + z

2

)
+ f

(
x+ y

2

)
≤ h (3/2) f

(
x+ y + z

3

)
+ h (1/2) [f (x) + f (y) + f (z)]

≤ h (3/2)
[
f
(x

3

)
+ f

(y
3

)
+ f

(z
3

)]
+h (1/2) [f (x) + f (y) + f (z)] ,

for all x, y, z ∈ I . If h is nonnegative subadditive on J and f is an AtAh-
concave and superadditive, then the inequality is reversed.

(ii) If h : J → (0,∞) is a nonnegative superadditive and f : I → (0,∞) is an
AtAh-convex and superadditive, then

f

(
x+ z

2

)
+ f

(
y + z

2

)
+ f

(
x+ y

2

)
≤ h (3/2) f

(
x+ y + z

3

)
+ h (1/2) [f (x) + f (y) + f (z)]

≤ h (3/2) f
(
x+ y + z

3

)
+ h (1/2) f (x+ y + z) ,

for all x, y, z ∈ I . If h is a nonnegative subadditive and f is an AtAh-concave
and subadditive, then the inequality is reversed.

2.2 The case when f is h-AtGt-convex

Theorem 2.13. Let h : I → (0,∞) be a nonnegative super(sub)additive function.
If f : I → (0,∞) be an AtGh-convex (concave) function, then

f

(
x+ z

2

)
f

(
y + z

2

)
f

(
x+ y

2

)
≤ (≥)

[
f

(
x+ y + z

3

)]h(3/2)

[f (x) f (y) f (z)]h(1/2) , (19)

for all x, y, z ∈ I .

Proof. f is AtGh-convex iff the inequality

f (tα+ (1 − t)β) ≤ [f (α)]h(t) [f (β)]h(1−t) , 0 ≤ t ≤ 1
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holds for all α, β ∈ I . As in the proof of Theorem 2.3, we have

(x+ y − 2z)
(
s+ t− 3

2

)
= 0.

If x+ y − 2z = 0, then x = y = z, and Popoviciu’s inequality holds.
If s+ t = 3

2 , then since f is AtGt-convex, we have

f

(
x+ z

2

)
= f

[
s

(
x+ y + z

3

)
+ (1 − s) z

]
≤
[
f

(
x+ y + z

3

)]h(s)
[f (z)]h(1−s) ,

f

(
y + z

2

)
= f

[
t

(
x+ y + z

3

)
+ (1 − t) z

]
≤
[
f

(
x+ y + z

3

)]h(t)
[f (z)]h(1−t) ,

and

f

(
x+ y

2

)
≤ [f (x) f (y)]h(1/2) .

Multiplying these inequalities we get

f

(
x+ z

2

)
f

(
y + z

2

)
f

(
x+ y

2

)
≤
[
f

(
x+ y + z

3

)]h(s)
[f (z)]h(1−s)

[
f

(
x+ y + z

3

)]h(t)
× [f (z)]h(1−t) [f (x) f (y)]h(1/2)

=

[
f

(
x+ y + z

3

)]h(s)+h(t)

[f (z)]h(1−s)+h(1−t) [f (x) f (y)]h(1/2)

≤
[
f

(
x+ y + z

3

)]h(s+t)

[f (z)]h(2−s−t) [f (x) f (y)]
1
2

=

[
f

(
x+ y + z

3

)]h(3/2)

[f (x) f (y) f (z)]h(1/2) ,

as desired.
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Remark 2.14. In (19), setting z = y we have

f2
(
x+ y

2

)
f (y) ≤ (≥)

[
f

(
x+ 2y

3

)]h(3/2) [
f (x) f2 (y)

]h(1/2)
,

for all x, y ∈ I .

Corollary 2.15. If f : I → (0,∞) be an AtGt-convex function, then

f2
(
x+ z

2

)
f2
(
y + z

2

)
f2
(
x+ y

2

)
≤ f3

(
x+ y + z

3

)
f (x) f (y) f (z) ,

for all x, y, z ∈ I . The equality occurred for f (x) = ex, x > 0.

Example 2.16. f (x) = cosh (x), x ∈ R is AtGt-convex function. Applying
Corollary 2.15, we get

cosh2
(
x+ z

2

)
cosh2

(
y + z

2

)
cosh2

(
x+ y

2

)
≤ cosh3

(
x+ y + z

3

)
cosh (x) cosh (y) cosh (z)

Corollary 2.17. If f : I → (0,∞) be an AtG1/t-concave function, then

f3
(
x+ z

2

)
f3
(
y + z

2

)
f3
(
x+ y

2

)
≥ f2

(
x+ y + z

3

)
f6 (x) f6 (y) f6 (z) ,

for all x, y, z ∈ I .

Example 2.18. f (x) = arcsin (x), is 1
t -AtGt-concave for x ∈ [0, 1]. Applying

Corollary 2.17, we get

arcsin3
(
x+ z

2

)
arcsin3

(
y + z

2

)
arcsin3

(
x+ y

2

)
≥ arcsin2

(
x+ y + z

3

)
arcsin6 (x) arcsin6 (y) arcsin6 (z) ,

for all 0 ≤ x, y, z ≤ 1.

Corollary 2.19. If f : I → (0,∞) be an 1-AtGt-concave function, then

f

(
x+ z

2

)
f

(
y + z

2

)
f

(
x+ y

2

)
≤ (≥)f

(
x+ y + z

3

)
f (x) f (y) f (z) ,

for all x, y, z ∈ I .
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Example 2.20. Let f (x) = arcsin (x), is AtG1-concave for x ∈ [0, 1]. Applying
Corollary 2.19, we get

arcsin
(
x+ z

2

)
arcsin

(
y + z

2

)
arcsin

(
x+ y

2

)
≥ arcsin

(
x+ y + z

3

)
arcsin (x) arcsin (y) arcsin (z) ,

for all 0 ≤ x, y, z ≤ 1.

Corollary 2.21. In Theorem 2.13,

(i) if f : I → (0,∞) is an AtGh-convex and submultiplicative,

f

(
(x+ z) (y + z) (x+ y)

8

)
≤ f

(
x+ z

2

)
f

(
y + z

2

)
f

(
x+ y

2

)
≤
[
f

(
x+ y + z

3

)]h(3/2)

[f (x) f (y) f (z)]h(1/2) ,

for all x, y, z ∈ I . If f is an h-AtGt-concave and supermultiplicative, then
the inequality is reversed;

(ii) if f : I → (0,∞) is an AtGh-convex and supermultiplicative, then

f

(
x+ z

2

)
f

(
y + z

2

)
f

(
x+ y

2

)
≤
[
f

(
x+ y + z

3

)]h(3/2)

[f (x) f (y) f (z)]h(1/2)

≤
[
f

(
x+ y + z

3

)]h(3/2)

[f (xyz)]h(1/2) ,

for all x, y, z ∈ I . If f is an AtAh-concave and submultiplicative, then the
inequality is reversed.

Corollary 2.22. In Theorem 2.13,

(i) if f : I → (0,∞) is an AtGh-convex and superadditive,[
f
(x

2

)
+ f

(z
2

)] [
f
(y

2

)
+ f

(z
2

)] [
f
(x

2

)
+ f

(y
2

)]
≤ f

(
x+ z

2

)
f

(
y + z

2

)
f

(
x+ y

2

)
≤
[
f

(
x+ y + z

3

)]h(3/2)

[f (x) f (y) f (z)]h(1/2) ,
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for all x, y, z ∈ I . If f is an AtGh-concave and subadditive, then the inequal-
ity is reversed;

(ii) if f : I → (0,∞) is an AtGh-convex and subadditive, then

f

(
x+ z

2

)
f

(
y + z

2

)
f

(
x+ y

2

)
≤
[
f

(
x+ y + z

3

)]h(3/2)

[f (x) f (y) f (z)]h(1/2)

≤
[
f
(x

3

)
+ f

(y
3

)
+ f

(z
3

)]h(3/2)
[f (x) f (y) f (z)]h(1/2) ,

for all x, y, z ∈ I . If f is an AtGh-concave and submultiplicative, then the
inequality is reversed.

2.3 The case when f is AtHh-convex

Theorem 2.23. Let h : I → (0,∞) be a nonnegative super(sub)additive function.
If f : I → (0,∞) is an AtHh-concave (convex), then

1
f
(
x+z

2

) + 1
f
(y+z

2

) + 1
f
(x+y

2

)
≤ (≥)h (1/2)

[
1

f (y)
+

1
f (x)

+
1

f (z)

]
+

h (3/2)
f
(x+y+z

3

) , (20)

for all x, y, z ∈ I .

Proof. f is AtHh-convex iff the inequality

f (tα+ (1 − t)β) ≤ f (α) f (β)

h (1 − t) f (α) + h (1 − t) f (β)
, 0 ≤ t ≤ 1

holds for all α, β ∈ I . As in the proof of Theorem 2.3, we have

(x+ y − 2z)
(
s+ t− 3

2

)
= 0.

If x+ y − 2z = 0, then x = y = z, and Popoviciu’s inequality holds.
If s+ t = 3

2 , then since f is AtHh-convex, we have

f

(
x+ z

2

)
= f

[
s

(
x+ y + z

3

)
+ (1 − s) z

]
≥

f
(x+y+z

3

)
f (z)

h (1 − s) f
(x+y+z

3

)
+ h (s) f (z)

,
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and this equivalent to write

1
f
(
x+z

2

) ≤
h (1 − s) f

(x+y+z
3

)
+ h (s) f (z)

f
(x+y+z

3

)
f (z)

, (21)

similarly,

f

(
y + z

2

)
= f

[
t

(
x+ y + z

3

)
+ (1 − t) z

]
≥

f
(x+y+z

3

)
f (z)

h (1 − t) f
(x+y+z

3

)
+ h (t) f (z)

,

which equivalent to write

1
f
(y+z

2

) ≤
h (1 − t) f

(x+y+z
3

)
+ h (t) f (z)

f
(x+y+z

3

)
f (z)

, (22)

and

f

(
x+ y

2

)
≥ f (x) f (y)

h (1/2) (f (x) + f (y))

⇐⇒ 1
f
(x+y

2

) ≤ h (1/2) (f (x) + f (y))

f (x) f (y)
, (23)

Summing the inequalities (21)–(23), we get

1
f
(
x+z

2

) + 1
f
(y+z

2

) + 1
f
(x+y

2

)
≤

h (1 − s) f
(x+y+z

3

)
+ h (s) f (z)

f
(x+y+z

3

)
f (z)

+
h (1 − t) f

(x+y+z
3

)
+ h (t) f (z)

f
(x+y+z

3

)
f (z)

+
h (1/2) (f (x) + f (y))

f (x) f (y)

=
[h (1 − s) + h (1 − t)] f

(x+y+z
3

)
+ [h (s) + h (t)] f (z)

f
(x+y+z

3

)
f (z)

+
h (1/2) (f (x) + f (y))

f (x) f (y)

≤
h (2 − s− t) f

(x+y+z
3

)
+ h (s+ t) f (z)

f
(x+y+z

3

)
f (z)

+
h (1/2) (f (x) + f (y))

f (x) f (y)

=
h (1/2) f

(x+y+z
3

)
+ h (3/2) f (z)

f
(x+y+z

3

)
f (z)

+
h (1/2) (f (x) + f (y))

f (x) f (y)
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= h (1/2)
[

1
f (y)

+
1

f (x)
+

1
f (z)

]
+

h (3/2)
f
(x+y+z

3

) ,
as desired.

Remark 2.24. In (20), setting z = y, we have

2
f
(x+y

2

) + 1
f
(y+z

2

) ≤ (≥)h (1/2)
[

2
f (y)

+
1

f (x)

]
+

h (3/2)

f
(
x+2y

3

) ,
for all x, y ∈ I .

Corollary 2.25. If f : I → (0,∞) is an AtHt-concave (convex), then

2
3

[
1

f
(
x+z

2

) + 1
f
(y+z

2

) + 1
f
(x+y

2

)]

≤ (≥)
1
3

[
1

f (y)
+

1
f (x)

+
1

f (z)

]
+

1
f
(x+y+z

3

) ,
for all x, y, z ∈ I . The equality holds with f (x) = 1

x , x > 0.

Example 2.26. Let f (x) = xp, p ≥ 1. Then, AtHt-concave for x ≥ 1. Applying
Corollary 2.25, we get

2
3

[(
x+ z

2

)−p

+

(
y + z

2

)−p

+

(
x+ y

2

)−p
]

≤ x−p + y−p + z−p

3
+

(
x+ y + z

3

)−p

for all x, y, z ≥ 1.

Corollary 2.27. If f : I → (0,∞) is an AtH1/t-convex, then

3
2

[
1

f
(
x+z

2

) + 1
f
(y+z

2

) + 1
f
(x+y

2

)]

≤ 3
[

1
f (y)

+
1

f (x)
+

1
f (z)

]
+

1
f
(x+y+z

3

) ,
for all x, y, z ∈ I .
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Example 2.28. Let f (x) = − log (x), x 	 1. Then, f is AtH1/t-convex for x 	 1.
Applying Corollary 2.27, we get

3
2

[
1

log
(
x+z

2

) + 1
log
(y+z

2

) + 1
log
(x+y

2

)]

≤ 3
(

1
logx

+
1

log y
+

1
log z

)
+ log (xyz)

1
3 ,

for all x, y, z 	 1.

Corollary 2.29. If f : I → (0,∞) is an AtH1-convex, then

1
f
(
x+z

2

) + 1
f
(y+z

2

) + 1
f
(x+y

2

) ≤
[

1
f (y)

+
1

f (x)
+

1
f (z)

]
+

1
f
(x+y+z

3

) ,
for all x, y, z ∈ I .

Example 2.30. Let f (x) = − log (x), x 	 1. Then, f is AtH1-convex on x 	 1.
Applying Corollary 2.29, we get

1
log
(
x+z

2

) + 1
log
(y+z

2

) + 1
log
(x+y

2

) ≤ 1
logx

+
1

log y
+

1
log z

+ log (xyz)
1
3 ,

for all x, y, z 	 1.

3 Popoviciu inequalities for h-GN-convex functions

3.1 The case when f is GtAh-convex

Theorem 3.1. Let h : I → (0,∞) be a nonnegative super(sub)additive function.
If f : I → (0,∞) is GtAh-convex function, then

f
(√

xz
)
+ f (

√
yz) + f (

√
xy)

≤ (≥)h (3/2) f ( 3
√
xyz) + h (1/2) [f (x) + f (y) + f (z)] , (24)

for all x, y, z ∈ I .

Proof. f is GtAh-convex iff the inequality

f
(
αtβ1−t

)
≤ h (t) f (α) + h (1 − t) f (β) , 0 ≤ t ≤ 1
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holds for all α, β ∈ I . Assume that x ≤ y ≤ z. If y ≤ (xyz)1/3, then

(xyz)1/3 ≤ (xz)1/2 ≤ z and (xyz)1/3 ≤ (yz)1/2 ≤ z,

so that there exist two numbers s, t ∈ [0, 1] satisfying

(xz)1/2 = (xyz)s/3 z1−s

and

(yz)1/2 = (xyz)t/3 z1−t.

Multiplying the above equations, we get

(xyz)1/2 z1/2 = (xyz)(s+t)/3 z2−(s+t)

or
(xyz)

(s+t)
3 − 1

2 z2−(s+t)− 1
2 = 1.

If xyz2 = 1, then x = y = z, and Popoviciu’s inequality holds.
If s+ t = 3

2 , then since f is GtAh-convex, we have

f
(√

xz
)
= f

[
(xyz)s/3 z1−s

]
≤ h (s) [f ( 3

√
xyz)] + h (1 − s) [f (z)]

f (
√
yz) = f

[
(xyz)t/3 z1−t

]
≤ h (t) [f ( 3

√
xyz)] + h (1 − t) [f (z)]

f (
√
xy) ≤ h

(
1
2

)
[f (x) + f (y)]

Summing up these inequalities, we get

f
(√

xz
)
+ f (

√
yz) + f (

√
xy)

≤ h (s) f ( 3
√
xyz) + h (1 − s) f (z) + h (t) f ( 3

√
xyz) + h (1 − t) f (z)

+ h (1/2) [f (x) + f (y)]

= [h (s) + h (t)] f ( 3
√
xyz) + [h (1 − s) + h (1 − t)] f (z)

+ h (1/2) [f (x) + f (y)]

≤ h (s+ t) f ( 3
√
xyz) + h (2 − s− t) f (z) + h (1/2) [f (x) + f (y)]

= h (3/2) f ( 3
√
xyz) + h (1/2) f (z) + h (1/2) [f (x) + f (y)]

= h (3/2) f ( 3
√
xyz) + h (1/2) [f (x) + f (y) + f (z)] ,

which proves the inequality (24).
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Remark 3.2. In (24), setting z = y, we get

2f (
√
xy) + f (y) ≤ (≥)h (3/2) f

(
3
√

xy2
)
+ h (1/2) [f (x) + 2f (y)] ,

for all x, y ∈ I .

Corollary 3.3. If f : I → (0,∞) is GtAt-convex function, then

2
3
[
f
(√

xz
)
+ f (

√
yz) + f (

√
xy)
]
≤ f ( 3

√
xyz) +

f (x) + f (y) + f (z)

3
,

for all x, y, z ∈ I . The equality holds with f (x) = log (x), x > 1.

Example 3.4. Let f (x) = cosh (x), x > 0. Then, f is GtAt-convex on (0,∞).
Applying Corollary 3.3, we get

2
3
[
cosh

(√
xz
)
+ cosh (

√
yz) + cosh (

√
xy)
]

≤ cosh ( 3
√
xyz) +

cosh (x) + cosh (y) + cosh (z)
3

,

for all x, y, z > 0.

Corollary 3.5. If f : I → (0,∞) is GtA1/t-concave function, then

3
2
[
f
(√

xz
)
+ f (

√
yz) + f (

√
xy)
]
≥ f ( 3

√
xyz) + 3 (f (x) + f (y) + f (z))

for all x, y, z ∈ I .

Example 3.6. Let f (x) = −x2, x > 0. Then, f is GtA1/t-concave on (0,∞).
Applying Corollary 3.5 we get

3
2
(xz + yz + xy) ≤ ( 3

√
xyz)2 + 3

(
x2 + y2 + z2)

for all x, y, z > 0.

Corollary 3.7. If f : I → (0,∞) is GtA1-concave function, then

f
(√

xz
)
+ f (

√
yz) + f (

√
xy) ≥ f ( 3

√
xyz) + f (x) + f (y) + f (z) ,

for all x, y, z ∈ I .
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Example 3.8. Let f (x) = −x2, x > 0. Then, f is GtA1-convex on (0,∞).
Applying Corollary 3.7, we get

xz + yz + xy ≤ ( 3
√
xyz)2 + x2 + y2 + z2

for all x, y, z > 0.

Corollary 3.9. In Theorem 3.1,

(i) if f : I → (0,∞) is an GtAh-convex and superadditive,

f
(√

xz
)
+ f (

√
yz) + f (

√
xy)

≤ h (3/2) f ( 3
√
xyz) + h (1/2) [f (x) + f (y) + f (z)]

≤ h (3/2) f ( 3
√
xyz) + h (1/2) f (x+ y + z) ,

for all x, y, z ∈ I . If f is an GtAh-concave and subadditive, then the inequal-
ity is reversed;

(ii) if f : I → (0,∞) is an GtAh-convex and subadditive, then

f
(√

xz +
√
yz +

√
xy
)
≤ f

(√
xz
)
+ f (

√
yz) + f (

√
xy)

≤ h (3/2) f ( 3
√
xyz) + h (1/2) [f (x) + f (y) + f (z)] ,

for all x, y, z ∈ I . If f is an GtAh-concave and superadditive, then the
inequality is reversed.

Example 3.10. Let f (x) = cosh (x), which is GtAt-convex and superadditive on
(0,∞). Applying Corollary 3.9, we get

2
3
[
cosh

(√
xz
)
+ cosh (

√
yz) + cosh (

√
xy)
]

≤ cosh ( 3
√
xyz) +

cosh (x) + cosh (y) + cosh (z)
3

≤ cosh ( 3
√
xyz) +

1
3

cosh (x+ y + z) ,

for all x, y, z > 0.

3.2 The case when f is GtGh-convex

Theorem 3.11. Let h : I → (0,∞) be a nonnegative super(sub)additive function.
If f : I → (0,∞) is GtGh-convex function, then

f
(√

xz
)
f (

√
yz) f (

√
xy)

≤ (≥) [f ( 3
√
xyz)]h(3/2) [f (x) f (y) f (z)]h(1/2) , (25)

for all x, y, z ∈ I .
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Proof. f is GtGh-convex iff the inequality

f
(
αtβ1−t

)
≤ [f (α)]h(t) [f (β)]h(1−t) , 0 ≤ t ≤ 1

holds for all α, β ∈ I . As in the proof of Theorem 3.1, if xyz2 = 1, then x = y =
z, and Popoviciu’s inequality holds.

If s+ t = 3
2 , then since f is GtGh-convex, we have

f
(√

xz
)
= f

[
(xyz)s/3 z1−s

]
≤ [f ( 3

√
xyz)]h(s) [f (z)]h(1−s) ,

f (
√
yz) = f

[
(xyz)t/3 z1−t

]
≤ [f ( 3

√
xyz)]h(t) [f (z)]h(1−t) ,

f (
√
xy) ≤ h

(
1
2

)
[f (x) + f (y)] .

Multiplying these inequalities we get

f
(√

xz
)
f (

√
yz) f (

√
xy)

≤ [f ( 3
√
xyz)]h(s) [f (z)]h(1−s) [f ( 3

√
xyz)]h(t) [f (z)]h(1−t) [f (x) f (y)]h(1/2)

= [f ( 3
√
xyz)]h(s)+h(t) [f (z)]h(1−s)+h(1−t) [f (x) f (y)]h(1/2)

≤ [f ( 3
√
xyz)]h(s+t) [f (z)]h(2−s−t) [f (x) f (y)]h(1/2)

= [f ( 3
√
xyz)]h(3/2) [f (z)]h(1/2) [f (x) f (y)]h(1/2)

= [f ( 3
√
xyz)]h(3/2) [f (x) f (y) f (z)]h(1/2) ,

as desired.

Remark 3.12. In (25), setting z = y we get

f2 (
√
xy) f (y) ≤ (≥)

[
f
(

3
√

xy2
)]h(3/2) [

f (x) f2 (y)
]h(1/2)

,

for all x, y ∈ I .

Corollary 3.13. If f : I → (0,∞) is GtGt-convex (concave) function, then

f2 (√xz
)
f2 (

√
yz) f2 (

√
xy) ≤ (≥)f3 ( 3

√
xyz) f (x) f (y) f (z) ,

for all x, y, z ∈ I . The equality holds with f (x) = ex, x > 0.
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Example 3.14. Let f (x) = cosh (x), which is GtGt-convex on (0,∞). Applying
Corollary 3.13, we get

cosh2 (√xz
)

cosh2 (
√
yz) cosh2 (

√
xy) ≤ f3 ( 3

√
xyz) cosh (x) cosh (y) cosh (z) ,

for all x, y, z > 0.

Corollary 3.15. If f : I → (0,∞) is GtG1/t-concave function, then

f3 (√xz
)
f3 (

√
yz) f3 (

√
xy) ≥ f2 ( 3

√
xyz) f6 (x) f6 (y) f6 (z) ,

for all x, y, z ∈ I .

Example 3.16. Let f (x) = exp (−x) which is 1
t -GtGt-concave on (0,∞). Ap-

plying Corollary 3.15 we get

√
xz +

√
yz +

√
xy ≤ 2

3
3
√
xyz + 2x+ 2y + 2z,

for all x, y, z > 0.

Corollary 3.17. If f : I → (0,∞) is GtG1-concave function, then

f
(√

xz
)
f (

√
yz) f (

√
xy) ≤ f ( 3

√
xyz) f (x) f (y) f (z) ,

for all x, y, z ∈ I .

Example 3.18. Let f (x) = exp (−x), which is GtG1-concave on (0,∞). Apply-
ing Corollary 3.17, we get

√
xz +

√
yz +

√
xy ≤ 3

√
xyz + x+ y + z,

for all x, y, z > 0.

Corollary 3.19. In Theorem 3.11.

(i) If f : I → (0,∞) is an GtGh-convex and supermultiplicative,

f
(√

xz
)
f (

√
yz) f (

√
xy) ≤ [f ( 3

√
xyz)]h(3/2) [f (x) f (y) f (z)]h(1/2)

≤ [f ( 3
√
xyz)]h(3/2) [f (xyz)]h(1/2) ,

for all x, y, z ∈ I .
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(ii) If f : I → (0,∞) is an GtGh-convex and submultiplicative, then

f (xzy) ≤ f
(√

xz
)
f (

√
yz) f (

√
xy)

≤ [f ( 3
√
xyz)]h(3/2) [f (x) f (y) f (z)]h(1/2)

≤
[
f
(

3
√
x
)
f ( 3

√
y) f

(
3
√
z
)]h(3/2)

[f (x) f (y) f (z)]h(1/2) ,

for all x, y, z ∈ I .

Example 3.20. Let f (x) = cosh (x), which is GtGt-convex and supermultiplica-
tive on [1,∞). Applying Corollary 3.19, we get

cosh2 (√xz
)

cosh2 (
√
yz) cosh2 (

√
xy) ≤ cosh3 ( 3

√
xyz) cosh (x) cosh (y) cosh (z)

≤ cosh3 ( 3
√
xyz) cosh (xyz)

for all x, y, z ≥ 1.

3.3 The case when f is GtHh-convex

Theorem 3.21. Let h : I → (0,∞) be a nonnegative super(sub)additive function.
If f : I → (0,∞) is GtHh-concave (convex) function, then

1
f (

√
xz)

+
1

f
(√

yz
) + 1

f
(√

xy
)

≤ (≥)h

(
1
2

)[
1

f (x)
+

1
f (y)

+
1

f (z)

]
+

h (3/2)
f
(

3
√
xyz

) , (26)

for all x, y, z ∈ I .

Proof. f is GtHh-convex iff the inequality

f
(
αtβ1−t

)
≤ f (α) f (β)

h (1 − t) f (α) + h (t) f (β)
, 0 ≤ t ≤ 1

holds for all α, β ∈ I . As in the proof of Theorem 3.1, if xyz2 = 1, then x = y =
z, and Popoviciu’s inequality holds.

If s+ t = 3
2 , then since f is GtHh-convex, we have

f
(√

xz
)
= f

[
(xyz)s/3 z1−s

]
≥

f
(

3
√
xyz

)
f (z)

h (1 − s) f
(

3
√
xyz

)
+ h (s) f (z)
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and this equivalent to write

1
f (

√
xz)

≤
h (1 − s) f

(
3
√
xyz

)
+ h (s) f (z)

f
(

3
√
xyz

)
f (z)

, (27)

similarly,

f (
√
yz) = f

[
(xyz)t/3 z1−t

]
≥

f
(

3
√
xyz

)
f (z)

h (1 − t) f
(

3
√
xyz

)
+ h (t) f (z)

which equivalent to write

1
f
(√

yz
) ≤

h (1 − t) f
(

3
√
xyz

)
+ h (t) f (z)

f
(

3
√
xyz

)
f (z)

, (28)

and

f (
√
xy) ≥ f (x) f (y)

h (1/2) (f (x) + f (y))

⇐⇒ 1
f
(√

xy
) ≤ h (1/2) (f (x) + f (y))

f (x) f (y)
. (29)

Summing the inequalities (27)–(29), we get
1

f (
√
xz)

+
1

f
(√

yz
) + 1

f
(√

xy
)

≤
h (1 − s) f

(
3
√
xyz

)
+ h (s) f (z)

f
(

3
√
xyz

)
f (z)

+
h (1 − t) f

(
3
√
xyz

)
+ h (t) f (z)

f
(

3
√
xyz

)
f (z)

+
h (1/2) (f (x) + f (y))

f (x) f (y)

=
[h (1 − s) + h (1 − t)] f

(
3
√
xyz

)
+ [h (s) + h (t)] f (z)

f
(

3
√
xyz

)
f (z)

+
h (1/2) (f (x) + f (y))

f (x) f (y)

≤
h (2 − s− t) f

(
3
√
xyz

)
+ h (s+ t) f (z)

f
(

3
√
xyz

)
f (z)

+
h (1/2) (f (x) + f (y))

f (x) f (y)

≤
h (1/2) f

(
3
√
xyz

)
+ h (3/2) f (z)

f
(

3
√
xyz

)
f (z)

+
h (1/2) (f (x) + f (y))

f (x) f (y)

= h

(
1
2

)[
1

f (x)
+

1
f (y)

+
1

f (z)

]
+

h (3/2)
f
(

3
√
xyz

) ,
which proves the inequality in (26).



Popoviciu’s type inequalities 75

Remark 3.22. In (26), setting z = y then we get

2
f
(√

xy
) + 1

f (y)
≤ (≥)h

(
1
2

)[
1

f (x)
+

2
f (y)

]
+

h (3/2)

f
(

3
√

xy2
) ,

for all x, y ∈ I .

Corollary 3.23. If f : I → (0,∞) is GtHt-concave (convex) function, then

2
3

[
1

f (
√
xz)

+
1

f
(√

yz
) + 1

f
(√

xy
)]

≤ (≥)
1
3

[
1

f (x)
+

1
f (y)

+
1

f (z)

]
+

1
f
(

3
√
xyz

) ,
for all x, y, z ∈ I . The equality holds with f (x) = 1

log(x) , x � 1.

Example 3.24. Let f (x) = cosh (x), then f is GtHt-convex for all x ≥ 1. Apply-
ing Corollary 3.23, we get

2
3

[
1

cosh (
√
xz)

+
1

cosh
(√

yz
) + 1

cosh
(√

xy
)]

≥ 1
3

[
1

cosh (x)
+

1
cosh (y)

+
1

cosh (z)

]
+

1
cosh

(
3
√
xyz

) ,
for all x, y, z ≥ 1.

Corollary 3.25. If f : I → (0,∞) is GtH1/t-convex function, then

3
2

[
1

f (
√
xz)

+
1

f
(√

yz
) + 1

f
(√

xy
)] ≥ 3

[
1

f (x)
+

1
f (y)

+
1

f (z)

]
+

1
f
(

3
√
xyz

) ,
for all x, y, z ∈ I .

Example 3.26. Let f (x) = − log (x), then f is GtH1/t-convex for all x > 1.
Applying Corollary 3.25, then we get

3
2

[
1

log (
√
xz)

+
1

log
(√

yz
) + 1

log
(√

xy
)]

≤ 3
[

1
log (x)

+
1

log (y)
+

1
log (z)

]
+

1
log
(

3
√
xyz

) ,
for all x, y, z > 1.
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Corollary 3.27. If f : I → (0,∞) is 1-GtHt-convex function, then

1
f (

√
xz)

+
1

f
(√

yz
) + 1

f
(√

xy
) ≥

[
1

f (x)
+

1
f (y)

+
1

f (z)

]
+

1
f
(

3
√
xyz

) ,
for all x, y, z ∈ I .

Example 3.28. Let f (x) = − log (x), then f is GtH1-convex for all x > 1. Ap-
plying Corollary 3.27, we get

1
log (

√
xz)

+
1

log
(√

yz
) + 1

log
(√

xy
)

≤
[

1
log (x)

+
1

log (y)
+

1
log (z)

]
+

1
log
(

3
√
xyz

) ,
for all x, y, z > 1.

4 Popoviciu inequalities for h-HN-convex functions

4.1 The case when f is HtAh-convex

Theorem 4.1. Let h : I → (0,∞) be a nonnegative super(sub)additive. If f :
I → (0,∞) is HtAh-convex (concave) function, then

f

(
2xz
x+ z

)
+ f

(
2yz
y + z

)
+ f

(
2xy
x+ y

)
≤ (≥)h (3/2) f

(
3xyz

xy + yz + xz

)
+ h (1/2) [f (x) + f (y) + f (z)] , (30)

for all x, y, z ∈ I .

Proof. f is HtAh-convex iff the inequality

f

(
αβ

tα+ (1 − t)β

)
≤ h (1 − t) f (α) + h (t) f (β) , 0 ≤ t ≤ 1,

holds for all α, β ∈ I . Assume that x ≤ y ≤ z. If y ≤ 3xyz
xy+yz+xz , then

3xyz
xy + yz + xz

≤ 2xz
x+ z

≤ z and
3xyz

xy + yz + xz
≤ 2yz

y + z
≤ z,
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so that there exist two numbers s, t ∈ [0, 1] satisfying

2xz
x+ z

=

3xyz
xy+yz+xz · z

s 3xyz
xy+yz+xz + (1 − s) z

,

and

2yz
y + z

=

3xyz
xy+yz+xz · z

t 3xyz
xy+yz+xz + (1 − t) z

.

For simplicity set, u = 3xyz
xy+yz+xz , summing the reciprocal of the previous two

equations

x+ z

2xz
+

y + z

2yz
=

(s+ t) 3xyz
xy+yz+xz + (2 − s− t) z

3xyz
xy+yz+xz · z

=
3 (s+ t)u+ (2 − s− t) z

3u · z
.

Simplifying the above equation and reverse it back to the original form (taking the
reciprocal again), we get

u

u+ z
=

u

2 (s+ t)u+ 2
3 (2 − s− t) z

,

since y, x, z > 0, this yields that x = y = z and thus Popoviciu’s inequality holds,
or s+ t = 1

2 and in this case since f is HtAh-convex, we have

f

(
2xz
x+ z

)
= f

( 3xyz
xy+yz+xz · z

s 3xyz
xy+yz+xz + (1 − s) z

)

≤ h (s) f (z) + h (1 − s) f

(
3xyz

xy + yz + xz

)
,

f

(
2yz
y + z

)
= f

( 3xyz
xy+yz+xz · z

t 3xyz
xy+yz+xz + (1 − t) z

)

≤ h (t) f (z) + h (1 − t) f

(
3xyz

xy + yz + xz

)
,

f

(
2xy
x+ y

)
≤ h (1/2) [f (x) + f (y)] .
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Summing up these inequalities we get

f

(
2xz
x+ z

)
+ f

(
2yz
y + z

)
+ f

(
2xy
x+ y

)
≤ [h (s) + h (t)] f (z) + [h (1 − s) + h (1 − t)] f

(
3xyz

xy + yz + xz

)
+ h (1/2) [f (x) + f (y)]

≤ h (s+ t) f (z) + h (2 − s− t) f

(
3xyz

xy + yz + xz

)
+ h (1/2) [f (x) + f (y)]

= h (3/2) f
(

3xyz
xy + yz + xz

)
+ h (1/2) [f (x) + f (y) + f (z)] ,

which proves the inequality in (30).

Remark 4.2. In (30), setting z = y then we get

2f
(

2xy
x+ y

)
+ f (y) ≤ (≥)h (3/2) f

(
3xy

2x+ y

)
+ h (1/2) [f (x) + 2f (y)] ,

for all x, y ∈ I .

Corollary 4.3. If f : I → (0,∞) is HtAt-convex (concave) function, then

2
3

[
f

(
2xz
x+ z

)
+ f

(
2yz
y + z

)
+ f

(
2xy
x+ y

)]
≤ (≥) f

(
3xyz

xy + yz + xz

)
+

f (x) + f (y) + f (z)

3
,

for all x, y, z ∈ I . The equality holds with f (x) = 1
x , x > 0.

Example 4.4. Let f (x) = arctan (x), then f is HtAt-convex on (0,∞). Applying
Corollary 4.3, then we get

2
3

[
arctan

(
2xz
x+ z

)
+ arctan

(
2yz
y + z

)
+ arctan

(
2xy
x+ y

)]
≤ arctan

(
3xyz

xy + yz + xz

)
+

arctan (x) + arctan (y) + arctan (z)
3

,
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Corollary 4.5. If f : I → (0,∞) is HtA1/t-concave function, then

3
2

[
f

(
2xz
x+ z

)
+ f

(
2yz
y + z

)
+ f

(
2xy
x+ y

)]
≥ f

(
3xyz

xy + yz + xz

)
+ 3 [f (x) + f (y) + f (z)] ,

for all x, y, z ∈ I .

Example 4.6. Let f (x) = x2, therefore f is HtA1/t-concave on x < 0. Applying
Corollary 4.5, we get

(
xz

x+ z

)2

+

(
yz

y + z

)2

+

(
xy

x+ y

)2

≥ 3
2

(
xyz

xy + yz + xz

)2

+
1

18
(
x2 + y2 + z2) ,

for all x, y, z < 0.

Corollary 4.7. If f : I → (0,∞) is HtA1-concave function, then

f

(
2xz
x+ z

)
+ f

(
2yz
y + z

)
+ f

(
2xy
x+ y

)
≥ f

(
3xyz

xy + yz + xz

)
+ [f (x) + f (y) + f (z)] ,

for all x, y, z ∈ I .

Example 4.8. Let f (x) = x2, therefore f is HtA1-concave on (−∞, 0). Applying
Corollary 4.7, then we get

(
xz

x+ z

)2

+

(
yz

y + z

)2

+

(
xy

x+ y

)2

≥ 9
4

[
x2 + y2 + z2

9
+

(
xyz

xy + yz + xz

)2
]
,

for all x, y, z < 0.

Corollary 4.9. In Theorem 4.1,
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(i) if f : I → (0,∞) is an HtAh-convex and superadditive, then

2
[
f

(
xz

x+ z

)
+ f

(
yz

y + z

)
+ f

(
xy

x+ y

)]
≤ f

(
2xz
x+ z

)
+ f

(
2yz
y + z

)
+ f

(
2xy
x+ y

)
≤ h (3/2) f

(
3xyz

xy + yz + xz

)
+ h (1/2) [f (x) + f (y) + f (z)]

≤ h (3/2) f
(

3xyz
xy + yz + xz

)
+ h (1/2) f (x+ y + z) ,

for all x, y, z ∈ I . If f is an HtAh-concave and subadditive, then the inequal-
ity is reversed;

(ii) if f : I → (0,∞) is an HtAh-convex and subadditive, then

f

(
2xz
x+ z

+
2yz
y + z

+
2xy
x+ y

)
≤ f

(
2xz
x+ z

)
+ f

(
2yz
y + z

)
+ f

(
2xy
x+ y

)
≤ h (3/2) f

(
3xyz

xy + yz + xz

)
+ h (1/2) [f (x) + f (y) + f (z)]

≤ 3h (3/2) f
(

xyz

xy + yz + xz

)
+ h (1/2) [f (x) + f (y) + f (z)] ,

for all x, y, z ∈ I . If f is an HtAh-concave and superadditive, then the
inequality is reversed.

4.2 The case when f is HtGh-convex

Theorem 4.10. Let h : I → (0,∞) be a nonnegative super(sub)additive. If f :
I → (0,∞) is HtGh-convex (concave) function, then

f

(
2xz
x+ z

)
f

(
2yz
y + z

)
f

(
2xy
x+ y

)
≤ (≥)

[
f

(
3xyz

xy + yz + xz

)]h(3/2)

[f (x) f (y) f (z)]h(1/2) , (31)

for all x, y, z ∈ I .
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Proof. f is HtGh-convex iff the inequality

f

(
αβ

tα+ (1 − t)β

)
≤ [f (α)]h(1−t) [f (β)]h(t) , 0 ≤ t ≤ 1.

holds for all α, β ∈ I . As in the proof of Theorem 4.1, if x = y = z, then the
inequality holds. If s+ t = 1

2 since f is HtGh-convex, we have

f

(
2xz
x+ z

)
= f

( 3xyz
xy+yz+xz · z

s 3xyz
xy+yz+xz + (1 − s) z

)

≤ [f (z)]h(s)
[
f

(
3xyz

xy + yz + xz

)]h(1−s)

,

f

(
2yz
y + z

)
= f

( 3xyz
xy+yz+xz · z

t 3xyz
xy+yz+xz + (1 − t) z

)

≤ [f (z)]h(t)
[
f

(
3xyz

xy + yz + xz

)]h(1−t)

,

f

(
2xy
x+ y

)
≤ [f (x) f (y)]h(1/2) .

Multiplying these inequalities we get

f

(
2xz
x+ z

)
f

(
2yz
y + z

)
f

(
2xy
x+ y

)
≤ [f (z)]h(s)

[
f

(
3xyz

xy + yz + xz

)]h(1−s)

[f (z)]h(t)

×
[
f

(
3xyz

xy + yz + xz

)]h(1−t)

[f (x) f (y)]h(1/2)

≤ [f (z)]h(s)+h(t)

[
f

(
3xyz

xy + yz + xz

)]h(1−s)+h(1−t)

[f (x) f (y)]h(1/2)

≤ [f (z)]h(s+t)

[
f

(
3xyz

xy + yz + xz

)]h(2−s−t)

[f (x) f (y)]h(1/2)

= [f (z)]h(1/2)
[
f

(
3xyz

xy + yz + xz

)]h(3/2)

[f (x) f (y)]h(1/2)

=

[
f

(
3xyz

xy + yz + xz

)]h(3/2)

[f (x) f (y) f (z)]h(1/2) ,

which proves the inequality in (31).
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Remark 4.11. In (31), setting z = y we get that

2f
(

2xy
x+ y

)
f (y) ≤ (≥)

[
f

(
3xy

2x+ y

)]h(3/2) [
f (x) f2 (y)

]h(1/2)
,

for all x, y ∈ I .

Corollary 4.12. If f : I → (0,∞) is HtGt-convex (concave) function, then

f

(
2xz
x+ z

)
f

(
2yz
y + z

)
f

(
2xy
x+ y

)
≤ (≥)

[
f

(
3xyz

xy + yz + xz

)]3/2

[f (x) f (y) f (z)]1/2 ,

for all x, y, z ∈ I . The equality holds with f (x) = e
1
x , x > 0.

Example 4.13. Let f (x) = exp (x), x > 0. Then, f is HtGt-convex on (0,∞).
Applying Corollary 4.12 we get

4xz
x+ z

+
4yz
y + z

+
4xy
x+ y

≤ 9xyz
xy + yz + xz

+ xyz,

for all x, y, z > 0.

Corollary 4.14. If f : I → (0,∞) is HtG1/t-concave, then

f

(
2xz
x+ z

)
f

(
2yz
y + z

)
f

(
2xy
x+ y

)
≥
[
f

(
3xyz

xy + yz + xz

)]2/3

[f (x) f (y) f (z)]2 ,

for all x, y, z ∈ I .

Example 4.15. Let f (x) = exp (−x), x > 0. Then, f is HtG1/t-concave on
(0,∞). Applying Corollary 4.14, we get

xz

x+ z
+

yz

y + z
+

xy

x+ y
≤ xyz

xy + yz + xz
+ xyz,

for all x, y, z > 0.
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Corollary 4.16. If f : I → (0,∞) is HtG1-concave function, then

f

(
2xz
x+ z

)
f

(
2yz
y + z

)
f

(
2xy
x+ y

)
≥ f

(
3xyz

xy + yz + xz

)
f (x) f (y) f (z) ,

for all x, y, z ∈ I .

Example 4.17. Let f (x) = exp (−x), x > 0. Then, f is HtG1-concave on (0,∞).
Applying Corollary 4.16 we get

2xz
x+ z

+
2yz
y + z

+
2xy
x+ y

≤ 3xyz
xy + yz + xz

+ x+ y + z

for all x, y, z > 0.

Corollary 4.18. In Theorem 4.10.

(i) If f : I → (0,∞) is an HtGh-convex and superadditive, then

2
[
f

(
xz

x+ z

)
+ f

(
yz

y + z

)
+ f

(
xy

x+ y

)]
≤ f

(
2xz
x+ z

)
+ f

(
2yz
y + z

)
+ f

(
2xy
x+ y

)
≤
[
f

(
3xyz

xy + yz + xz

)]h(3/2)

[f (x) f (y) f (z)]h(1/2) ,

for all x, y, z ∈ I . If f is an h-HtGt-concave and subadditive, then the
inequality is reversed.

(ii) If f : I → (0,∞) is an HtGh-convex and subadditive, then

f

(
2xz
x+ z

+
2yz
y + z

+
2xy
x+ y

)
≤ f

(
2xz
x+ z

)
+ f

(
2yz
y + z

)
+ f

(
2xy
x+ y

)
≤
[
f

(
3xyz

xy + yz + xz

)]h(3/2)

[f (x) f (y) f (z)]h(1/2)

≤
[

3f
(

xyz

xy + yz + xz

)]h(3/2)

[f (x) f (y) f (z)]h(1/2) ,

for all x, y, z ∈ I . If f is an HtGh-concave and superadditive, then the
inequality is reversed.
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4.3 The case when f is HtHh-convex

Theorem 4.19. Let h : I → (0,∞) be a nonnegative super(sub)additive. If f :
I → (0,∞) is HtHh-concave (convex) function, then

f

(
2xz
x+ z

)
+ f

(
2yz
y + z

)
+ f

(
2xy
x+ y

)
≤ (≥)h

(
1
2

)[
1

f (x)
+

1
f (y)

+
1

f (z)

]
+

h (3/2)

f
(

3xyz
xy+yz+xz

) , (32)

for all x, y, z ∈ I .

Proof. f is HtHh-convex iff the inequality

f

(
αβ

tα+ (1 − t)β

)
≤ f (α) f (β)

h (t) f (α) + h (1 − t) f (β)
, 0 ≤ t ≤ 1

holds for all α, β ∈ I . As in the proof of Theorem 4.1, if x = y = z, then the
inequality holds. If s+ t = 1

2 since f is HtHh-convex, we have

f

(
2xz
x+ z

)
= f

( 3xyz
xy+yz+xz · z

s 3xyz
xy+yz+xz + (1 − s) z

)

≥
f
(

3xyz
xy+yz+xz

)
· f (z)

h (s) f
(

3xyz
xy+yz+xz

)
+ h (1 − s) f (z)

,

f

(
2yz
y + z

)
= f

( 3xyz
xy+yz+xz · z

t 3xyz
xy+yz+xz + (1 − t) z

)

≥
f
(

3xyz
xy+yz+xz

)
· f (z)

h (t) f
(

3xyz
xy+yz+xz

)
+ h (1 − t) f (z)

,

f

(
2xy
x+ y

)
≥ f (x) f (y)

h (1/2) [f (x) + f (y)]
,



Popoviciu’s type inequalities 85

Therefore, by summing the reciprocal of the above inequalities we get

1
f
( 2xz
x+z

) + 1

f
(

2yz
y+z

) +
1

f
(

2xy
x+y

)
≤

h (s) f
(

3xyz
xy+yz+xz

)
+ h (1 − s) f (z) + h (t) f

(
3xyz

xy+yz+xz

)
+ h (1 − t) f (z)

f
(

3xyz
xy+yz+xz

)
· f (z)

+
h (1/2) [f (x) + f (y)]

f (x) f (y)

≤
[h (s) + h (s)] f

(
3xyz

xy+yz+xz

)
+ [h (1 − s) + h (1 − t)] f (z)

f
(

3xyz
xy+yz+xz

)
· f (z)

+
h (1/2) [f (x) + f (y)]

f (x) f (y)

≤
h (s+ t) f

(
3xyz

xy+yz+xz

)
+ h (2 − s− t) f (z)

f
(

3xyz
xy+yz+xz

)
· f (z)

+
h (1/2) [f (x) + f (y)]

f (x) f (y)

=
h (1/2) f

(
3xyz

xy+yz+xz

)
+ h (3/2) f (z)

f
(

3xyz
xy+yz+xz

)
· f (z)

+
h (1/2) [f (x) + f (y)]

f (x) f (y)

=
h (1/2) f

(
3xyz

xy+yz+xz

)
+ h (3/2) f (z)

f
(

3xyz
xy+yz+xz

)
· f (z)

+
h (1/2) [f (x) + f (y)]

f (x) f (y)

= h

(
1
2

)[
1

f (x)
+

1
f (y)

+
1

f (z)

]
+

h (3/2)

f
(

3xyz
xy+yz+xz

) ,
which proves the inequality in (32).

Remark 4.20. In (32), setting z = y then we get

2f
(

2xy
x+ y

)
+ f (y) ≤ (≥)h

(
1
2

)[
1

f (x)
+

2
f (y)

]
+

h (3/2)

f
(

3xy
2x+y

) ,
for all x, y, z ∈ I .
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Corollary 4.21. If f : I → (0,∞) is HtHt-concave (convex) function, then

2
3

 1
f
( 2xz
x+z

) + 1

f
(

2yz
y+z

) +
1

f
(

2xy
x+y

)


≤ (≥)
1
3

[
1

f (x)
+

1
f (y)

+
1

f (z)

]
+

1

f
(

3xyz
xy+yz+xz

) ,
for all x, y, z ∈ I . The equality holds with f (x) = x, x > 1.

Example 4.22. Let f (x) = arctan (x), x > 0. Then f is HtHt-concave on (0,∞).
Applying Corollary 4.21, then we get

2
3

 1
arctan

( 2xz
x+z

) + 1

arctan
(

2yz
y+z

) +
1

arctan
(

2xy
x+y

)


≤ 1
3

[
1

arctan (x)
+

1
arctan (y)

+
1

arctan (z)

]
+

1

arctan
(

3xyz
xy+yz+xz

) ,
for all x, y, z > 0.

Corollary 4.23. If f : I → (0,∞) is HtH1/t-convex function, then

3
2

 1
f
( 2xz
x+z

) + 1

f
(

2yz
y+z

) +
1

f
(

2xy
x+y

)


≥ 3
[

1
f (x)

+
1

f (y)
+

1
f (z)

]
+

1

f
(

3xyz
xy+yz+xz

) ,
for all x, y, z ∈ I .

Example 4.24. Let f (x) = − log (x), x > 1. Then f is HtH1/t-convex on (0,∞).
Applying Corollary 4.23, we get

3
2

 1
log
( 2xz
x+z

) + 1

log
(

2yz
y+z

) +
1

log
(

2xy
x+y

)


≤ 3
[

1
log (x)

+
1

log (y)
+

1
log (z)

]
+

1

log
(

3xyz
xy+yz+xz

) ,
for all x, y, z > 0.
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Corollary 4.25. If f : I → (0,∞) is HtH1-convex function, then

1
f
( 2xz
x+z

) + 1

f
(

2yz
y+z

) +
1

f
(

2xy
x+y

)
≥
[

1
f (x)

+
1

f (y)
+

1
f (z)

]
+

1

f
(

3xyz
xy+yz+xz

) ,
for all x, y, z ∈ I .

Example 4.26. Let f (x) = − log (x), x > 0. Then f is HtH1-convex on (0,∞).
Applying Corollary 4.25, then we get

1
log
( 2xz
x+z

) + 1

log
(

2yz
y+z

) +
1

log
(

2xy
x+y

)
≤
[

1
log (x)

+
1

log (y)
+

1
log (z)

]
+

1

log
(

3xyz
xy+yz+xz

) ,
for all x, y, z > 0.
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