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Abstract. In this work, we investigate some applications of differential subordination
for the class of meromorphic univalent functions defined by rapid operator and obtained
coefficient bounds, integral representations, weighted and arithmetic mean for the class
Y(A, B, u,0).
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1 Introduction

Let X denote the class of functions f of the form
1 o0
=7 n n’ n=>0 1
f(z) Z+n§,1a2 a (1)

which are analytic in the punctured open disk
U={z:2€C,0< |z <1} =U\ {0}. 2)

Let X5, X2*(7) and Zi(y) (0 < v < 1) denote the subclasses of X that are mero-
morphic univalent, meromorphically starlike functions of order v and meromor-
phically convex functions of order ~y respectively. Analytically, f € £*(~) if and
only if f is of the form (1) and satisfies

—§R{ fo;iz))} >, z € U. (3)

Similarly, f € X () if and only if f is of the form (1) and satisfies

) Zf”(Z)}
%{H— 702) >, z€U 4)
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and similar other classes of meromorphically univalent functions have been exten-
sively studied by Altintas et al. [1], Aouf [2], Mogra et al. [5], Urlegaddi and
Ganigi [9] and others (see [4,6, 10]).

Given two functions f and g, which are analytic in U, the function f is said to
be subordinate to g, written as

f=gand f(z) <g(z), z€U,
if there exists a Schwarz function w analytic in U, with
w(0) =0and |w(z)| <1, z€U
and such that
f(z) =g(w(z)), zeU.
If g is univalent in U, then f < g if and only if f(0) = ¢(0) and f(U) C g(U)
([7, p. 36D).
In [3], Athsan and Kulkarni introduced rapid operator for analytic functions

and Rosy and Sunil Varma [8] modified their operator to meromorphic functions
as follows.

Lemma 1.1. For f € L given by (1), 0 < u < 1 and 0 < 0 < 1, if the operator
5’5 : X — X is defined by

FIf(z) = = 9r 7 7759“@1 W f(tz)d (5)
0
then
I f(z) = % + i L(n, p,0)a,2", (6)
1
where
L) = (1 =y L2 )

and I is the familiar Gamma function.

Definition 1.2. Let A and B, (—1 < B < A < 1) be defined parameters. We
say that a function f € X is in the class X(A, B, u, 0) if it satisfies the following
subordination condition by (6)

14+ Az
1+ Bz’

fzz(y!?f(z))' = zeU. (8)
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By the definition of the differential subordination (8) is equivalent to the fol-
lowing condition

L4+ 22(L2f(2))

AT By | < el )

In particular, we can write X(1 — 23, —1,) = X(/3), where X(3) denotes class of
the functions in X satisfying the following condition:

R (—zz(yjf(z))’) >B, 0<B<1,zel. (10)

The aim of this study is to determine some usual properties of the geometric func-
tion theory such as coefficient bounds, integral representation, weighted mean and
arithmetic mean for the class X(A, B, u, 9).

2 Coefficient bounds
Theorem 2.1. Let the function f of the form (1) be in X. Then the function f
belongs to the class X(A, B, ., 0) if and only if
o0
(1-B)> nL(n,u,0)an < (A - B), (11)
n=1

where —1 < B<A<1, 0<u<land0<6H<I1.

The result is sharp for the function f is given by

1 A-B .
1(z) = . (1— B)nL(n,u,@)Z ’ (12)

Proof. Assume that the condition (11) is true.
We must show that f € X(A, B, u, 6) or equivalently prove that

1+ 2(Sf(2))
A+ B2(SVf(2))

< 1.
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Since

1+ 271 f(2)

n=1

o0
1+ (=14 > nL(n,u,0)ayz

A+ B2(Ff(2))

n=1

(18

nL(n, u,0)a,z"*

n=1

A+ B(—1+ > nL(n,p,0)a,z"*)

n=1

gL

nL(n, u,0)
1

n

A— B+ B nL(n,p,0)a,z"!

IN

A- § L(n, 11, 0)an

<1,

last inequality is true by (11).

Conversely, suppose that f € X(A, B, i1, 6).
We must to show that the condition (11) holds. We have

1+ 22(S)f(2))
A+ B2(S0f(2))

<1

S nL(n, p, 0)a,z"+!

= = <1
A—B+ B Y. nL(n,pu,0)a,z"H
n=1
and since R(z) < |z|, we have
- 1
Z L(n, p, 0)anz""
R el <1

(13)
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We choose the values of z on the real axis and letting = — 17, then we obtain

o0

> nL(n, p,0)an

n=1

A—B+ B> nL(n,u,0)ay

n=1

<1

=(1-B) inL(n,u,G)an < (A-B).
n=1

The result is sharp for the function f is given by (12).

Corollary 2.2. Let f € X(A, B, 1, 0). Then

(=B
"= n(l = B)L(n,u,0)’

n > 1.

3 Integral representation

In the next theorem, we obtain an integral representation for ,75 f(2).

Theorem 3.1. Let f € (A, B, i1, 0). Then

yﬁf(z) = /(Aqs(t)_l)dt, where |¢(z)] < 1, z € U.

2(1 — Bo(t))

0

Proof. Let f € X(A, B, 1, 0). Letting —z%&’ff(z))’ =q(z2).
We have

(2) 1+ Az
A 1+ Bz
or we can write
az) 1 |
Bq(z) — A
so that consequently, we have
q(z) -1
pr— 1 U'
By = = ) 192 <1, 2 e

We can write
1 A6(2)

~A @) = TR0y

(14)



102 B. Venkateswarlu, P. T. Reddy, S. Sridevi and G. Swapna

;11— Ad(z)
—(y,ff(z)) —;%

T (Ab(t) - 1)
FOf(z) = / e
0

Hence, the proof of theorem is completed. o

4 Linear combination
In this section, we prove a linear combination for the class X(A4, B, u, ).

Theorem 4.1. Let

k
filz) = eifi(z) € X(A, B, p,0) (15)
i=1
k
where Zcz- =1.
i=1

Proof. By Theorem 2.1, we can write for every i € {1,2,--- ,k},

in(l — B)L(n, u,9) ani < 1.

— A—B
Therefore,

k 00
F(z) = Z ¢ (Zl + Z an,izn>
i=1 n=1
koo
=214 Z Z Cin i2"
i=1 n=1
9] k
=214 Z <Z ciam) z".
n=1 \i=1

However,

> n(1 = BYL(n, 1,0) [
3 ( A)f(B 1 )<Z>

n=1
b . n(l —B)L(n,u,0
Sy, e

i=1 Ln=1
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Then F'(z) € (A, B, i1,0). The proof of theorem completed. o

5 Weighted mean

Definition 5.1. Let f and g belongs to X. Then the weighted mean h;(z) of f and
g is given as

[(1=35)f(2) + (1 +)g(2)] . (16)

N\P—‘

hj(z) =
In the following theorem we will show the weighted mean for the class X( A, B, i, 6).

Theorem 5.2. If f and g are in the class X(A, B, 11, 0) then the weighted mean of
fand g are also in (A, B, , 9).

Proof. By definition of h;(z), we get

hi(2) :% {(1 —7) <z_1 —I—Zanz”) +(1+3) <z—1 +anz”>]
= n=1

o0
Z 1 —j)an+ (14 7)by] 2"

l\) \

Since f,g € £(A, B, u, ), by Theorem 2.1, we must prove that
- 1 1 ,
>l = B)L(n, 1, 0) | (1 = fan + 5 (1 + )b
n=1

= 31 =) = B) S nL(n, p.0)an + 5 (1 +5)(1 — B) S nLin, p,0)b,
n=1 n=1

1 1 .
<51 =A=B)+ (1 +))(A-B)
< (A-B).
Hence the proof of theorem is completed. i

6 Arithmetic mean

Definition 6.1. Let f1(z), f2(2),-- -, fu(z) € (A, B, p,0). Then the arithmetic
k

mean h(z) of f;(z) is givenby h(z) = 1 3 fi(2).

=1
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Next, we will prove the arithmetic mean for the class £(A, B, u, 6).

Theorem 6.2. If f1(z), f2(2),- -+, fu(2) are in the class £(A, B, i, 0) then the
arithmetic mean h(z) of fi(z) is given by

k
Z (17)

?v \

is also in the class ¥(A, B, i, 0).

Proof. We have for h(z) by definition

Since f;(z) € £(A, B, u,0), forevery i € {1,2,--- ,k}, by using Theorem 2.1,
we prove that

(1—B)§: L(n, i, 0 <Zan>

n=1

The proof of theorem completed. i
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