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Abstract. In this paper, we mainly study the existence of analytical solutions of stochastic

pantograph differential equations. The standard Picard’s iteration method is used to obtain
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Keywords. Pantograph differential equation, ψ-type fractional derivative, existence,

Picard’s iteration method.

2010 Mathematics Subject Classification. 34A08, 34K40, 34A12.

1 Introduction

In recent years, many researchers have been interested in fractional differential

equations (FDEs). This is due, first, to their widespread applications in diverse

fields of engineering and natural sciences, and secondly to the thorough improve-

ment of the theory of fractional calculus (see [1, 17, 18]).In much of the literature

we can see various complicated fractional operators in which of them the well-

known Caputo, the Riemann-Liouville, Hadamard, Caputo-Hadamard, Hilfer and

Fabrizio-Caputo fractional operators have been utilized by many researchers (see

for example, [11–14]).

The pantograph equation is one of the most famous classes of differential equa-

tions and this type of equation is taken for as proportional delay functional differ-

ential equations and have many applications in pure and applied mathematics as

it appears in various contexts such as control systems, probability, electrodynam-

ics, quantum mechanics, etc. Furthermore, FDEs with delays have been proven

to be more realistic in the description of natural phenomena than those without

delays. Therefore, the study of these equations has drawn much attention (see

[3,11–14]). Stochastic delay differential equations played an important role in ap-

plication areas, such as physics, biology, economics, and finance [2,4]. Stochastic

pantograph differential equations are particular cases of stochastic unbounded de-
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lay differential equations, Ockendon and Tayler [16] found how the electric current

is collected by the pantograph of an electric locomotive, therefore one speaks of

stochastic pantograph differential equations (see [10, 20]). In recent years, as one

of the most important characteristics of stochastic systems, the existence and sta-

bility analysis has caused much more attention [4, 5, 7, 8, 19].

Very recently, Almeida [6] introduced a new fractional derivative named by ψ-

fractional derivative with respect to another function, which extended the classical

fractional derivative and also studied some properties like semigroup law, Tay-

lor’s Theorem and so on. Thereafter, Vivek et al. [20] initially studied a Cauchy

problem for pantograph equations including Hilfer fractional derivative.

Inspired by the papers [6, 15, 20], we consider the stochastic pantograph differ-

ential equations (SPDEs) involving ψ-Caputo fractional derivative of the form

[l]cDα;ψx(t) = Ax(t) + f(t, x(t), x(λt)) + σ(t, x(t), x(λt))Ẇ (t),

t ∈ J := [0, T ], (1)

x(k)(0) = x
(k)
0 , k = 0, 1, 2, ...,m − 1, (2)

where 0 < λ < 1, n − 1 < α ≤ n and f, σ are given functions and A is the

generator of strongly continuous semigroup {τ (t) : t ≥ 0} on a Hilbert space H .

Observing that (1)-(2) is equivalent to the Volterra integral equation as follows:

x(t) =





∑⌈α⌉−1

k=0
x(k)(0)
k!

(ψ(t))k

+ 1
Γ(α)

∫ t
0
ψ

′

(s)(ψ(t)− ψ(s))α−1Ax(s)ds

+ 1
Γ(α)

∫ t
0
ψ

′

(s)(ψ(t)− ψ(s))α−1f(s, x(s), x(λs))ds

+ 1
Γ(α)

∫ t
0
ψ

′

(s)(ψ(t)− ψ(s))α−1σ(s, x(s), x(λs))dW (s),

(3)

where n− 1 < α ≤ n and t ≥ 0.

2 Prerequisite

Throughout this paper, we define (Ω,ℑ,P) be a completely probability space,

for a separable Hilbert space H with inner product (·, ·) and norm ‖·‖. Then,

L2(Ω,H ) is Hilbert space of H -valued random variables with the inner product

E(·, ·) and the norm
(
E ‖·‖2

) 1
2

in which E denotes the expectation.

Further, we consider the ψ-type Caputo fractional derivative of order α for a

vector-valued function x(t), and the initial value problem (IVP) of an abstract

SPDEs (1)-(2), where f(t, x(t), x(λt)), σ(t, x(t), x(λt)) : J × Rd × Rd → Rd

and the dimension d ≥ 1. The term Ẇ (t) = dW
dt

describes a state dependent
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random noise, {W (t)}t≥0 is a standard scalar Brownian motion or Wiener process

defined on a given filtered probability space(Ω,ℑ,ℑt,P) with a normal filteration

{ℑt}t≥0, which is an increasing and continuous family of σ-algebra of ℑ, contains

the P-null sets, and W (t) is ℑt-measurable for all t ≥ 0.

Let us start by giving the definition of ψ-type fractional derivatives. Further

details of related basic properties used in the text can be found in [6].

Definition 2.1. [9] For u ∈ L2(Ω,H ), there holds the following Itô isometry

property:

E

∥∥∥∥
∫ t

0

u(s)dW (s)

∥∥∥∥
2

=

∫ t

0

E ‖u(s)‖2 ds, (4)

where {W (t)}t≥0 is the Wiener (Brownian motion) process.

Definition 2.2. The ψ-type fractional integral of Riemann-Liouville of order α >

0 of a function f is defined as follows:

Iα,ψf(t) =
1

Γ(α)

∫ t

0

ψ
′

(s) (ψ(t) − ψ(s))α−1 f(s)ds, a.e t ∈ J,

where the symbol Γ(·) stands for the Euler’s gamma function.

Definition 2.3. The ψ-Caputo-type derivative of order α for a function f can be

defined as

cDα;ψf(t) =
1

Γ(n− α)

∫ t

0

ψ
′

(s) (ψ(t)− ψ(s))n−α−1 f (n)(s)ds,

where t > 0, n− 1 < α ≤ n.

Remark 2.4. The relationship between the ψ-type Riemann-Liouville derivative

and the ψ-type Caputo derivative can be defined as

cDα;ψf(t) = RDα;ψf(t) −
n−1∑

k=0

f (k)(0)

k!
(ψ(t))k.

Lemma 2.5. Every solution of the equation (3) is also a solution of the IVP (1)-(2)

for α ∈ (0, 1], and vice versa.
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In particular, when 0 < α ≤ 1, the Volterra integral equation (3) can be written

as

x(t) =





x(0) + 1
Γ(α)

∫ t
0
ψ

′

(s)(ψ(t)− ψ(s))α−1Ax(s)ds

+ 1
Γ(α)

∫ t
0
ψ

′

(s)(ψ(t)− ψ(s))α−1f(s, x(s), x(λs))ds

+ 1
Γ(α)

∫ t
0
ψ

′

(s)(ψ(t)− ψ(s))α−1σ(s, x(s), x(λs))dW (s).

(5)

Lemma 2.6. The IVP (1)-(2) is equivalent to the integral equation (5), for α ∈
(0, 1]. In other words, every solution of the integral equation (5) is also a solution

of the IVP (1)-(2) and vice versa.

Proof. For proof, see e.g. [1].

First of all, in order to consider the existence and uniqueness of the solution for

the IVP (1)-(2) for α ∈ (0, 1], we impose the following hypotheses.

(H1) Let τ (·) be aC0-semigroup generated by the unbounded operatorA, letM =
maxt∈J ‖τ (t)‖H

.

(H2) The function f and σ are measurable and continuous in H for each fixed

t ∈ J and there exists a bounded function L : J× [0,∞)× [0,∞) → [0,∞),
(t, x, y) → L(t, x, y) such that

E

(
‖f(t, u, v)‖2

)
+ E

(
‖σ(t, u, v)‖2

)
≤ L

(
t,E

(
‖u‖2

)
,E

(
‖v‖2

))
, (6)

for all t ∈ R and u, v ∈ L2(Ω,H ).

(H3) There exists a bounded function K : J× [0,∞)× [0,∞) → [0,∞) such that

E

(
‖f(t, u, v) − f(t, u, v)‖2

)
+ E

(
‖σ(t, u, v)− σ(t, u, v)‖2

)

≤ K
(
t,E

(
‖u− u‖2

)
,E

(
‖v − v‖2

))
, (7)

for all t ∈ R and u, u, v, v ∈ L2(Ω,H ).

Lemma 2.7. ([9]) If the function L(t, x(·), x(·)) is locally integrable in t for each

fixed x ∈ [0,∞) and is continuous non-decreasing in x for each fixed t ∈ J , for

all δ >, x0 ≥ 0, then the integral equation

x(t) = x0 + δ

∫ t

0

L(s, x(s), x(λs))ds,

has a global solution on J .
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Lemma 2.8. ([9]) The function K(t, x(·), x(·)) is locally integrable in t for each

fixed x ∈ [0,∞) and is continuous non-decreasing in x for each fixed t ∈ J , for

K(t, 0, 0) = 0 and γ > 0, if a non-negative continuous function φ(t) satisfies

φ(t) ≤ γ

∫ t

0

K(s, x(s), x(λs))ds, t ∈ R,

φ(0) = 0,

then φ(0) = 0 for all t ∈ J .

In order to consider the existence and uniqueness of the solution of equation (5),

we use the Picard’s iteration method. The sequence of stochastic process {xn}n≥0

is constructed as follows:

x0(t) = x0

xn+1(t) = x0 +G1(xn)(t) +G2(xn)(t), n ≥ 1,

in which

G1(xn)(t) =
1

Γ(α)

∫ t

0

ψ
′

(s)(ψ(t)− ψ(s))α−1f(s, xn(s), xn(λs))ds,

G2(xn)(t) =
1

Γ(α)

∫ t

0

ψ
′

(s)(ψ(t)− ψ(s))α−1σ(s, xn(s), xn(λs))dW (s).

Lemma 2.9. ([9]) The sequence of stochastic processes {xn}n≥0 is bounded in

L2(Ω,H ).

Proof. From the inequality

(a+ b+ c)n ≤ 3n−1(an + bn + cn), n ≥ 1.

We have

E ‖xn+1(t)‖
2 ≤ 3E ‖x0‖

2 + 3E ‖G1(xn)(t)‖
2 + 3E ‖G2(xn)(t)‖

2 . (8)

Using the Hölder′s inequality, the hypothesis (H2) and α > 1
2
, we can obtain

E ‖G1(xn)(t)‖
2 ≤

1

Γ2(α)
E

∥∥∥∥
∫ t

0

ψ
′

(s)(ψ(t)− ψ(s))α−1f(s, xn(s), xn(λs))ds

∥∥∥∥
2

≤
1

Γ2(α)

(ψ(t))2α−1

2α − 1

∫ t

0

E ‖f(s, xn(s), xn(λs))‖
2 ds

≤ k1

∫ t

0

L

(
s, ‖xn(s)‖

2
L2(Ω,H ) , ‖xn(s)‖

2
L2(Ω,H )

)
ds,
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where k1 = 1
Γ2(α)

(ψ(T ))2α−1

2α−1
.

Applying the Itô isometry property (4), the Hölder′s inequality and the hy-

pothesis (H2) and α > 1
2
, we have

E ‖G2(xn)(t)‖
2 ≤

1

Γ2(α)
E

∥∥∥∥
∫ t

0

ψ
′

(s)(ψ(t)− ψ(s))α−1σ(s, xn(s), xn(λs))ds

∥∥∥∥
2

≤
1

Γ2(α)

(ψ(t))2α−1

2α − 1

∫ t

0

E ‖σ(s, xn(s), xn(λs))‖
2 ds

≤ k1

∫ t

0

L

(
s, ‖xn(s)‖

2
L2(Ω,H ) , ‖xn(s)‖

2
L2(Ω,H )

)
ds.

Hence, using the above relation into the inequality (8), we have

‖xn+1(t)‖
2
L2(Ω,H ) ≤ c1 + c2

∫ t

0

L

(
s, ‖xn(s)‖

2
L2(Ω,H ) , ‖xn(s)‖

2
L2(Ω,H )

)
ds, (9)

in which c1 = 3E ‖x0‖
2

and c2 = 6k1.

Then, we consider the following integral equation:

u(t) = c1 + c2

∫ t

0

L (s, u(s), u(λs))ds. (10)

This equation has a globe solution via the Lemma 2.7 and we can use the mathe-

matical induction to prove ‖xn(t)‖
2
L2(Ω,H ) ≤ x(t) for all t ∈ J . Particularly, we

have

sup
n≥0

‖xn(t)‖L2(Ω,H ) ≤ [x(T )]
1
2 .

Lemma 2.10. The sequence of stochastic processes {xn}n≥0 is a Cauchy sequence.

3 Main results

In this part, we prove the existence and uniqueness of the solution of the problem

(1)-(2).

Theorem 3.1. Under the condition (6) and (7), by using Lemma 2.7 and Lemma

2.8, there exists a unique solution of equation (5).
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Proof. Existence: If we denote x(t) by the limit of the sequence {xn(t)}n≥0 and

by using Lemma 2.10 then we can see that the right hand side in the second Pi-

card’s iteration tend to

{
x0 +

1
Γ(α)

∫ t
0
ψ

′

(s)(ψ(t)− ψ(s))α−1f(s, x(s), x(λs))ds

+ 1
Γ(α)

∫ t
0
ψ

′

(s)(ψ(t)− ψ(s))α−1σ(s, x(s), x(λs))dW (s),

which is just a solution of equation (5).

Uniqueness: Let x(t) and y(t) are two solution’s of equation (5), using Lemma

2.9, we have

‖x(t)− y(t)‖2
L2(Ω,H ) ≤ c3

∫ t

0

K
(
s, 2 ‖x(s)− y(s)‖2

L2(Ω,H )

)
ds.

Using Lemma 2.8, we can obtain ‖x(t)− y(t)‖2
L2(Ω,H ) = 0 for all t ∈ J , which

implies that x(t) = y(t).

4 Conclusion

In the last decades, stochastic pantograph differential equations have played an im-

portant role in application areas, such as physics, biology, economics, and finance.

In this paper, we employed the standard Picard’s iteration method to study the ex-

istence and uniqueness of analytical solutions of stochastic pantograph differential

equations involving ψ-Caputo fractional derivatives in Hilbert space.
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