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Some remarks on the links between the VIR and
Gompertz diffusion models and the links between
the CIR and Rayleigh diffusion models

Abdenbi El Azri and Ahmed Nafidi

Abstract. The main purpose of this work is to establish a new links between the stochastic
Cox-Ingersoll-Ross (CIR) model and the stochastic Rayleigh diffusion process (SRDP)
and the links between the Vasicek Interest Rate (VIR) process and the stochastic Gompertz
diffusion process (SGDP). These links focus on elementary stochastic calculus and Itd’s
calculus. Firstly, we prove that the square root of the CIR model is a SRDP. Secondly, we
prove that the square of the SRDP is a CIR model. Thirdly, we prove that the exponential
of the VIR model is a SGDP. Finally, we prove that the logarithm of the SGDP is a VIR
model. New computations of the probability transition density function (PTDF) and the
trend functions of the processes have quite simple formulations.
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1 Introduction

Theoretical aspects of stochastic processes play a fundamental role in the theory
and modeling of real phenomena such as financial, economic, biological, agro-
nomic, medical, health and environmental problems, etc. Many physical, biologi-
cal, and economic phenomena are either well approximated or reasonably modeled
by stochastic differential equation (SDE). Typically, SDE contain a variable repre-
senting random white noise computed as the derivative of the Wiener process. In
general, the SDE has the form:

dz(t) = a(t, z(t))dt + /b(t, 2(t))dw(t); = (to) = 2o 1)

with {w(t),t € [to; T']} is a Wiener process with an independent increment
w(t) — w(s) normally distributed with E(w(t) — w(s)) = 0 and
Var(w(t) —w(s)) =t — sfort > s, and x¢1is a fixed real positive and a(t, z(t))
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is drift coefficient and b(¢,x(¢)) is diffusion coefficient. By using the proper-
ties of a(t,x) and b(¢, x), it results that the equation (1) has a unique solution
{x(t),t € [to, T]} which is diffusion process valued in (0, c0) with initial value
xo (see, for instance [6]).

In the present study, two possibilities of equivalence between certain processes
are studied. Four kinds of the point stochastic diffusion process are considered.
The first is the CIR model, the second is the SRDP, the third is the VIR process
and the last is the SGDP. By using a transformation in the diffusion process and
applying It6’s calculus. Firstly, we show that the CIR is a SRDP and the SRDP is a
CIR. The PTDF of a CIR is obtained using a PTDF of a SRDP and the PTDF of a
SRDP is obtained using a PTDF of a CIR process, from which the trend functions
of the processes are obtained by the properties of modified Bessel function of the
first kind and Kummer function. Finally, we show that the VIR model is a SGDP
and the SGDP is a VIR model. The PTDF of a VIR model is obtained using a
PTDF of a SGDP and the PTDF of a SGDP is obtained using a PTDF of a VIR
model, from which the trend functions of the processes are obtained.

The CIR model was originally introduced by John Carrington Cox et al. [1] in
1985. It has been applied in finance to describe the evolution of interest rates. It is
also used by Heston [2] for the stochastic volatility model and by Duffie [3] for the
default intensities in credit risk model. Zhu [12] proposed a generalization of the
classical CIR model and the classical Hawkes process with exponential exciting
function. Dyrting [13] tested the existing methods for evaluating the non-central
x-distribution for the CIR process and developed a new method based on a Bessel
series representation. Guo [14] proves that for a model in which the historical stock
price follows a CIR model, there is no equivalent martingale measure.

The SRDP, from its earliest formulation Rayleigh [10] has been widely ex-
ploited in physics. Giorno et al. [5] suggested a few remarks on the Rayleigh
process. The SRDP have been studied in terms of specific theoretical considera-
tions and trend analysis, and have been fruitfully applied to real cases in Gutiérrez
etal. [4,11].

The VIR model is an approach mathematical to modeling interest rate move-
ments. It was introduced by Vasicek [15] in 1977. Basically, it is often employed
in the valuation of interest rate futures and is occasionally used to price various
hard-to-value bonds. Xiao et al. [16] proposed the Vasicek fractional model to
illustrate the dynamics of the short interest rate.

The stochastic Gompertz diffusion has been discussed in terms of specific the-
oretical aspects and trend analysis, and has been used efficiently in real cases
stochastic in Gutiérrez et al. [18-20]. Gompertz [21] introduced the curve to
model the law of human mortality and formulated it as a double exponential.
Thereafter, the curve has been modified several times and stated in various forms
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to ease its study. Gutiérrez-Jaimez et al. [17] presented a modified version of the
Gompertz model with an application to random growth.

This paper is structured as follows: in the second section, we present some def-
initions and preliminaries. The third section, presents the result obtained such as
the transformation of the CIR model into the SRDP, the PTDF, the trend function
(TF) and conditional TF (CTF) of the CIR model are obtained. The fourth section
presents a transformation of the SRDP into the CIR model; the PTDF, the TF and
CTF of the SRDP are obtained. The fifth section presents a transformation of the
VIR model into the SGDP, the PTDF, the TF and CTF of the VIR diffusion pro-
cess are calculated. The sixth section given a transformation of the SGDP into the
VIR model; the PTDF, the TF and CTF of the SGDP are obtained. Finally, a brief
conclusion to this study.

2 Definitions and preliminaries

2.1 The CIR process

Definition 2.1. The stochastic CIR model is a diffusion process {x(t);t € [to; T]}
with values in (0; co), and with drift and diffusion coefficient:

a(t,x) = k(0 — x); b(t,z) = o’x,

where k is the mean reversion speed, § is mean reversion parameter, and o standard
deviation that determines the volatility and &, 6 and o are positive real parameters.

After replacing in equation (1), we obtain the SDE:

dz(t) = k(0 — z(t)) dt + o/ z(t)dw(t); x(to) = xo. (2)

An examination of the boundary classification criteria demonstrates that x(t)
can reach zero if 0% > 2k0. If o < 2k0, the upward drift is large enough to make
the origin inaccessible.

Let « = k# and § = —k. After substitution in equation (2), we obtain the
following SDE:
dx(t) = (o + Ba(t)) dt + o/ x(t)dw(t); =z (to) = 0. (3)

2.2 The SRDP

Definition 2.2. The SRDP is a diffusion process is a diffusion process {z(t); t € [to; T}
with values in (0; co), and with drift and diffusion coefficient:

a(t,x) = % + Bx; b(t,z) = 2,
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with ¢ > 0, « and ( are real parameters.

After replacing in equation (1), we obtain the SDE:

(07

0= (5

+ 6m(t)> dt + cdw(t); x (to) = zo. “4)

2.3 The VIR model

Definition 2.3. The VIR model is a diffusion process {z(t); ¢ € [to; T]} with val-
ues in (0; c0), and with drift and diffusion coefficient:

a(t,z) = k(0 — x); b(t,z) = o2,

with k is speed of reversion of the mean, 6 is long-term level of the mean, and iCis
standard deviation that determines the volatility and &, 6 and ¢ are real parameters

Let « = k# and = —k. After replacing in equation (1), we obtain the SDE:

dz(t) = (o + Bz(t)) dt + odw(t); z(to) = xo. (5)

2.4 The SGDP

Definition 2.4. The SGDP is a diffusion process {x(t);t € [to; 7]} with values in
(0; 00),and with drift and diffusion coefficient:

a(t,r) = ax + Bxlog(x); b(t,x) = *a?,
with ¢ > 0, « and (3 are real parameters.
We can consider the SDE:
dx(t) = (ax(t) + fx(t)log(x(t))) dt + cx(t)dw(t); = (to) =xo. (6)
In all that follows {x(t);t € [to;T]} denotes a diffusion process with values in
(0; 00).
3 Transformation the CIR process into the SRDP

3.1 The first result
Theorem 3.1. If {x(t);t € [to; T|} is a CIR process. Then, the diffusion process

{M;t € [to;T]} is a SRDP.



The links between the VIR and SGDP and between the CIR and SRDP 5

Proof. The CIR model (3):
dz(t) = (a+ Bz(t)) dt + o/ z(t)dw(t); x (o) = xo.

Hence, the equation (3) becomes:

+ 5\/@) dt + odw(t); x(to) = wo.

mw:<¢mw

By applying the It6’s lemma to \/xz(t), we get

[0 0'2
(2‘8) B oo _
d ( x(t)) ol ev-omi SV | dt+ Zdw(t): @ (t) =a0. (]
Then, the equation (7) becomes:
vy . _
wmm=<mw+@m)ﬁ+wwmyu@—w ®)

2
with y(t) = z(t), v = < - Ug) 6 = g c= % and yo = /xo. Note that

if {zy;t > 0} be a diffusion process and g be a strictly monotone function with
continuous second derivative g”. Then, {g (7;)} defines a diffusion process (see
Theorem 2.1. p. 173, Karlin and Taylor [9]). The process {y(t),t € [to; T} in the
last equation is the SRDP with infinitesimal moments

a o2\1 p o?
a(t,y) = <2 — 8> ; + Ey, and b(t,y) = R

3.2 The PTDF of the CIR model using the SRDP

Let @ and ¢ be respectively the cumulative probability distribution function (CPDF)
and the TPDF of the SRDP, and F" and f be respectively the CPDF and the TPDF
of the CIR process. Then, we get:
dF(z,tly,s) _ dP(z(t)|z(s) =y < )

dz N dz
dpP (\/ IRV f<f) d® (Vz,],/7, 5)

dx dx

f(z,tly,s) =
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Finally, the TPDF of the CIR model x(¢), given z(s) for s < t is

f (I,t|y, S) _0_2 (eﬁ(tfs) _ 1) CXp ( o2 (eﬁ(tfs) _ 1) (ye/@(t—s))
Bt—s) ©)

[ (48
-y )

2

where I, denotes the modified Bessel function of the first kind and ¢ = — — 1.
(%)

Finally, let v(t,s) = z(t)|z(s) = x5 for s < t, we remark that v(¢, s) follows
a non-central chi-square distribution: v(t,s) ~ (x3(\) with degree of freedom

da . o(eBlp) . 4Bzt
d= per ¢ = ——7— and non centrality parameter A= m.

3.3 TF of the CIR process
The CTF of the CIR is:

E (z(t)|x(s) = x5) = /000 xf (z,t|zs, s) de.

Then, we get

2, —2Bz,ePt=s) B
E@®le(s) =) = (ePl=s) — 1) &P <02 (B —1) 2 (t= 5)>

B(t—s)
x4 28z 48\/x\/rse " 2
q+1
></0 227 exp <02 (eﬁ(t—s) - ])> P < = (eﬁ(t—s) — 1) ) dx.

By using the relations Gradshteyn and Ryzhik [[7], 6.643],

ey _Tlutv+s) o & £
/0 eyt (26/y) dy = mf A Hexp () M_,. (A)’

1
where 1 + v + 3 > 0and M_,,, is a Whittaker function Sepanier and Oldham
[[8], p. 477:48-13.1],

1 —z

1
M, (z) = 2" 2e> K(V—u+2,2u+1,x>,
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with K is the Kummer function, the CTF of the process leads to

—1
[(q+ 283 —2Bz el t=9)
E(z(t)|x(s) = x) :F(Z +1) <02 (eﬂ(t—s) _ 1)) exp <0—2(65(t—5)_1)>

2Bzelt=s)
2 (P 1))

><K<q+2,q+1,

Therefore, by the definition of the Kummer function K (for details see Appendix
the equation (25)), we have

r 1
K(g+2,q+1,2) :ez—l—i)ze ,

2BxsePt=5)

with I is the Gamma function and z = m

2
and g = —O; — 1. Finally,
o

by the last formula and the formula

20
Mg+2)=(g+ I (g+1)=—=T(+1).
We deduce that the CTF of the model is

E (z(t)|x(s) = x5) = % (eﬁ<t—5) - 1) + 2?9, (10)

Finally, from (10) and by the condition P (x (tg) = z9) = 1, the TF of CIR is
given by

E(x(t)) = % (eﬂt - 1) + zoelt. (11)
Remark 3.2. We can also study the asymptotic behavior in time of the TF of CIR
model, if 8 < 0, thus obtaining

tlggo E(z(t)) = 5

4 Transformation the SRDP into the CIR process

4.1 The second result

Theorem 4.1. If {z(t);t € [to; T|} is a SRDP. Then, the stochastic diffusion pro-
cess {x(t)%;t € [to; T)} is a CIR model.
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Proof. The SRDP (4):
e

i = (5

Hence, the equation (4) takes the form:

z(t)dz(t) = (a + Bx(t)z) dt + cx(t)dw(t); x(ty) = wo.

+ ﬁx(t)) dt + cdw(t); x(ty) = xo.

By using the Itd’s lemma to z:(t)*

d (:c(t)z) = (2a+ A+ 25:1:(15)2) dt 4+ 2cx(t)dw(t); x(ty) = xo. (12)

, we get the equation

Then, the equation (12) becomes:

dy(t) = (v + dy(t)) dt + o/y(t)dw(t); y (to) = Yo, (13)

where y(t) = z(t)*, v = 2a + %, § = 26, 0 = 2c and yy = x3. The diffusion
process {y(t);t € [to; T]}, in the last equation is the CIR model with infinitesimal
moments a(t,y) = 2a + ¢ + 2By; and b(t,y) = 4c>. O

4.2 The PTDF of the SRDP using the CIR model

The PTDF of the SRDP is:
d®(z,tly,s) _ dP (z(t)|z(s) =y < )
t = =
o(z,tly, s) In .
AP ((0Pa(sP =y <) _ dF (o2, s, )

dx dx
=2xf (a:z, tly?, s).

Finally, the PTDF of the SRDP model z(t), given xz(s) for s < t is

_ 2By %! B (2% +y?e?00)
o(z,tly, s) —m P T2 (@) 1) —qB(t—s)

2Bzyelt=s)
X [q <02 (ezﬂ(t—S) — 1) )
2

- 1
for a« > < and with the zero-flux condition and ¢ = % — 5 Finally, let
c
v(t,s) = x*(t)|z*(s) = a2 for s < t, we remark that v(t,s) ~ (x3(\) with
62 (62,8(t75) o 1) 261,2626@73)
and \ = 5

23 & (25 1)’

(14)

2
degree of freedom k£ = —C; +1,¢( =
c
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4.3 TF of the SRDP
The CTF of the model is:

E(z(t)|z(s) = z) = / zo(z, t|zs, s)dx.
0
Then, we have

2 S—q _ g 28(t—s)
B (a(t)|e(s) = 2:) = (ewffi 5 (Cz (fj;(f_s) —j 9B s>>

00 A2 B(t—s)
2 Bx 2Bxxse
X /o L7 exp <02 (e28(t—s) — 1)) Iq <02 (e28(t=5) — 1) dx.
By using the Gradshteyn and Ryzhik relations [[7], 6.643] and by applying the

change of variable y = x? s

S _Tetvds) oy (€ &
/o e ytTil, (28\/y) dy = Wf A" Hexp <> M_,. (A) ;

1
where ¢+ v + 3 > 0. Then, the CTF of the process leads to

r (q + 3) I6] > —Ba2e?Pt=)
B @(Ole(s) = 2 =F (5 <c2 CEEE ) exp <2(2ﬂ<>_1)>

3 Bxﬁezﬁ(t_s)
x K (q—i— E,q + 1, (28 1) (62,3(15—5) — 1)

Then, by the Kummer transformation K (a, b, z) = e*K (b — a, b, —z) (for details
see Appendix the equation (26)), we have

2 2p3(t—s) 2 _2B(t—s)
K(qtogrt, 0me ™ ) (e
2 2 (EZﬁ(tfs) _ 1) 2 (eZ,B(tfs) _ 1)

1 — Ba2e2Bt=s)
xK( > ,q+ 1, —(626(15*5)_1) .

Finally, we deduce that the CTF of the SRDP is

=1

T(q+3 ’
E(z(t)|z(s) = xs) _F((:]J+ T)) (Cz (ezﬁ(tﬁ—s) _ 1))

1 — B2 t=
><K<2,q+1,2(e2ﬁts) )

(15)
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From (15) and by the condition P (x (tg) = x¢) = 1, the TF of the SRDP is given
by

F(q+ 5) B z
E(x(t)) :F(q+ i) <02 (62,8(t7t0) _ 1))

-1 —ﬂx%
x K (23(] + 1; 62 (1 — ezﬁ(tto))> .

Remark 4.2. We can also analyze the asymptotic behavior in time of the TF of the
SRDP and using the formula K (a, b,0) = 1 (for details see Appendix the equation
(24)), if B < 0, thus obtaining

(16)

3
- 22

S Transformation the VIR model into the SGDP
5.1 The third result
Theorem 5.1. If {x(t);t € [to;T]} is a VIR model. Then, the diffusion process
{ez(t);t € [to;T}} is a SGDP.
Proof. The VIR model (5):
dx(t) = (o + px(t)) dt + odw(t); x(to) = xo.

By applying the Ito’s lemma to e*(*), we get

2
d (em(t)) = <<a + 02> e 4 ﬁw(t)ex(t)> dt + oe*Ddw(t); x (to) = zo.
(17)
Then, the equation (17) becomes:

0_2
(o) = ( (o 5 ) 0) + Bt 108 () ) i+ ay(o)dute): o) = m.

where y(t) = e**) and 5y = ™. The process {y(t):t € [to; T]} in the last equa-
2

tion is the SGDP with infinitesimal moments a(¢,y) = [ @ + 2) y+ Bylog (y);

and b(t,y) = o?y>. O
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5.2 The PTDF of the VIR model using the SGDP

Let H and h be respectively the CPDF and the PTDF of the SGDP, and let G and
g be respectively the CPDF and the PTDF of the VIR process. Then, we have:

dG(z,tly,s) _ dP(z(t)|z(s) =y < )
dz N dz
dP (e*W]e™®) = ¢¥ <€) dH (%, t|eY, s)

dx dx

=e”h (e”,t]eY, s)

g(x,tly,s) =

Finally, the PTDF of the VIR model z(t), given x(s) for t > s is

exp | — [z — (st y)) (18)
2no2v? (s, t) 20%0%(s, t) 7

g(z,tly,s) =

_ Blt=s)y @ ((Blt=s) 2s 1) = A (280—s) _
where u(s,t,y) =e y+6 (e 1) and v (s, t) 25 (e 1) .

This function is the density function of the normal distribution
N (s, t,y), 020 (s, 1))

5.3 TF of the VIR process
By the characteristics of normal distribution, the CTF of the model, for ¢t > s, is

E (z(t)|xs) = Pz, + % (= —1). (19)

Finally, from (19) and by considering the condition P (x (ty) = o) = 1, the TF
of the VIR model is given by

E(x(t) = Ptz 4 % (eﬁ“*tt}) - 1) : (20)

Remark 5.2. We can also analyze the asymptotic behavior in time of the TF of the
VIR process, if 8 < 0, thus obtaining

lim E(z(t)) = %3‘.

t—00



12 A. El Azri and A. Nafidi

6 Transformation the SGDP into the VIR model

6.1 The fourth result

Theorem 6.1. If {z(t);t € [to; T} is a SGDP. Then, the stochastic diffusion pro-
cess {log(x(t));t € [to; T} is a VIR model.

Proof. The SGDP (6):
dz(t) = (ax(t) + Px(t) log(x(t))) dt + cx(t)dw(t); =z (to) = .
Hence, the equation (6) becomes:

dz(t)
a(t)

By applying the It6’s lemma to log(z(t)), we have

= (a+ Blog(x(t))) dt + cdw(t); x (ty) = xo.

d (log(x(t)) = <<a - 622) + Blog(:r(t))) dt + cdw(t); x(to) = xo. (21)

Then, the equation (21) becomes:

a0 = ((a=5) + 5000 de +ctuley. vito) =

with y(t) = log(z(t)) and yo = log (o). The process {y(t),t € [to; T]} in the last
2
equation is the VIR model with infinitesimal moments a(¢, y) = (a — 02> + By;

and b(t,y) = . o

6.2 The PTDF of the SGDP model using the VIR model

The PTDF of the SGDP is:
bty s) = D) _ AP0l =y < )
_ dP (log(x(t))|log(x(s)) = log(y) < log(x))
dr
_ dG(log(z(t)), t[ log(y), s)
dx

- ég(log(w(t)),ﬂ log(y), s).
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Finally, the PTDF of the SGDP model x(¢), given x(s) for ¢ > s is

_ ! — [log(x) — (s, t,y)]”
h(z,tly,s) = P rer P exp ( 2202(s, 1) ) ;o (22

Qa0 — 2
with p(t, 5,y) = ”0~ log(y) + (O;BC) (GB(H) - 1) and

1
v¥(s,t) = 2 (ezﬁ(t*s) - 1). This function is the density function of the log-

normal distribution Ay (u(t, s, y), (s, t)).

6.3 TF of the SGDP

By the properties of log-normal distribution, the k™" CTF of the SGDP, for ¢ > s,

E (l'(t)k|x(s) - x) = exp (ku(s,t, y) + ’W) ’

for k = 1, the CTF of the SGDP, for ¢ > s, is

E (z(t)|z(s) = xs) =exp {1og(y)eﬁ<t8> + :; (625“*8) - 1) }

X exp {%‘42;(22 (emt_s) — 1)} .

Finally, from (23) and by considering the condition P (x (to) = o) = 1, the TF
of the SGDP is given by

(23)

_ B(t—to) iz 2B(t—to) _
E(z(t)) =exp<log(zg)e +45 (e 1)

2
X exp {2@25 ¢ (eﬂ(t—to) _ 1)} )

Remark 6.2. We can also analyze the asymptotic behavior in time of the TF of the
Gompertz process, if < 0, thus obtaining

24
tlggloE(x(t)) = exp (C 15 a) :
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7 Conclusion

Using the elementary stochastic calculus and ItAt s formula, we show four results.
First, we have shown that the stochastic CIR model is a SRDP and the SRDP is
a stochastic CIR model. The other hand, we have shown that the VIR model is a
SGDP and the SGDP is a VIR model.

Appendix

The kummer function

The Kummer Function is defined by (see [9]): K(a,b,x) Z (b——' It is

=0
analytic, regular at zero entire single-valued transcendental functlon of all a, b,

x except b = 0,—1,—2,—3, ..., for which it has simple poles. K(a,b,x) is a
notation introduced by Humbert,

(A7)

i =AA+ DO+ 20+ = 1) = =5

7(>‘)0 = 17(1)J =j!

with A stands for any number and j for any positive integer or zero, is the Pochham-
mer’s symbol and I is the Euler gamma function.

(i) We show that K (a,b,0) = 1. Therefore, by the definition of the Kummer
function K, we have

Finally, for x = 0 we deduce

abO_l—f—ZZ ]':. (24)
i )i
I(g+1)

ii) We show that K(q + 2,9 + 1,z) = ¢® + ———=z¢°. Therefore, by the
(i) (4+2,0+1,2) FoTa” y

definition of the Kummer function K, we have
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oo l"q+J25J) zj o0 q+2+j
K 2 1, I'a =
F(q+1) 2
+1+
(+2)] (¢ J)
T(g+1) — j2
_F(q—|—2){ +jzo I
_T(g+1) Ed
_F(q+2){q+ e +;j!
_T(g+1) o
‘r<q+z>{ sz
_T(g+1) ﬂ
“T(g+2) 0(j>!
Tg+1) > zﬂ
F( +2) { q+1 e +zz
I(g+1) N Llg+1) .
(+){(Q+ Je* + ze®} = e—l—mze.
(25)

(iii) We show that K (a, b, z) = e*K (b — a,b, —z). Therefore, based on Euler’s
integral representation for the Kummer function, one might expect that the
Kummer function satisfies

K(a,b,z) = __T) /1 (1 — )72 dt, b>a>0.
I'(a)l'(b—a) Jo
Hence,
r 1
K(a,b,z) = ) )/ e (1 — ) lae
0
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By applying the change of variable s = 1 — ¢, we get

F(b> z ! —zs a—1_b—a—1
T(@)(b—a)° /0 e (L — )T s (26)
=e*K(b—a,b,—2).

K(a,b,z) =
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