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About one problem of optimal control
synthesis
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Abstract. This paper tackles the problem of characterizing the natural class, or
Riccati rule space, of solutions to a specific equation. Despite the significant the-
oretical and practical implications, there is limited research exploring the appli-
cation of spectral decomposition of non-self-adjoint differential operators to solve
explicitly this nonlinear Riccati equation. Therefore, investigating operator Ric-
cati equations holds potential to validate the dynamic programming method and
address the synthesis problem.
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1 Introduction. Formulation of the problem and Bellman
equation

Numerous works have been published on optimal control of systems with
distributed parameters and several monographs have been published (see
the bibliography in [1]). Nevertheless, today one of the pressing problems
is the justified application of known optimal control methods to problems
of optimal control of systems with distributed parameters. It should be
noted that in practice, to solve the problem of synthesizing optimal control
in systems with distributed parameters, the dynamic programming method
has found wide application. It is known that the problem of synthesizing
optimal control with a minimum of a strictly convex quadratic functional
for a linear equation of a controlled object leads to the solution of the
nonlinear operator Riccati equation. The importance and necessity of a
complete study of this equation is dictated by the practical applicability of
this equation [1, 2]. One of the research problems is to determine the nat-
ural class - the natural class, that is, the Riccati rule space of solutions to
this equation. We know little of the work devoted to the application of the
spectral decomposition of non-self-adjoint differential operators to the ex-
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plicit determination of the solution of the nonlinear Riccati equation, which
has great theoretical and practical significance. This implies the relevance
of the problem of studying operator Riccati equations to substantiate the
dynamic programming method and solve the synthesis problem.

Let H be a real Hilbert space. Let us consider a controlled object, the
state of which is described by the following dynamic equation with Cauchy
data [1]:

ẍ(t) − aẋ(t) −A1Ax(t) = u1(t) + qu2(t) + f(t), 0 < t < T ≤ ∞, (1)

x(0) = x0 ∈ H(λ)
⋂
D(A), ẋ(0) = x1 ∈ H, (2)

where a ≤ 0 is a number, the operator A1A satisfies the following conditions,
the totality of which we denote by (A): A and A1 are linear unbounded
operators, with dense domains of definition D(A) ⊂ H and D (A1) ⊂ H,
respectively; the conjugate operator A∗A∗

1 also has a dense domain of defini-
tion D(A∗A∗

1) ⊂ H. It is assumed that q and f(t) are given elements from H
and L2

(
(0, T );H

)
, respectively, and u1(t) ∈ L2

(
(0, T );H

)
, u2(t) ∈ L2(0, T )

are control functions. The quadratic functional is minimized (t0 = 0)

I [t0,u1(·), u2(·)] = a0 ∥x(T ) − ξ0∥2 + a1 ∥ẋ(T ) − ξ1∥2

+
∫ T

t0

[a2(t) ∥x(t) − ψ0(t)∥2 + a3(t) ∥ẋ(t) − ψ1(t)∥2

+a4 ∥u1(t)∥2 + a5u
2
2(t)]dt, (3)

where a0, a1 are given numbers, a2(t), a3(t) ∈ L2(0, T ) are given non-negative
functions, such that a0 + a1 + a2(t) + a3(t) ̸= 0, a4, a5 are non-negative
numbers satisfying a4 + a5 ̸= 0, the elements ψ0, ψ1 ∈ L2 ((0, T );H) and
ξ0, ξ1 ∈ H are also specified. Moreover, if T = ∞, then a0 = a1 = 0.

We define the following two classes of arbitrary functions x(t) (T ≤ ∞):

B ((0, T );H) =
{
x(t) : x ∈ W 1

2 ((0, T );H)
⋂
C1 ((0, T );H) ;

x(t) ∈ D(A), ∀t ∈ [0, T ]
}
,

B∗ ((0, T );H) =
{
x(t) : x ∈ W 1

2 ((0, T );H)
⋂
C1 ((0, T );H) ;

x(t) ∈ D (A∗
1) ,∀t ∈ [0, T ]

}
.

We say that x(t) is a solution to problem (1)-(2) from the energy class (e.c.),
if x ∈ B ((0, T );H),

lim
t→0

∥x(t) − x0∥H(λ) = 0, lim
t→0

∥ẋ(t) − x1∥H = 0
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and the function x(t) satisfies equation (1) in the sense of the integral iden-
tity

(
ẋ(t), ω(t)

)∣∣∣t2

t1
=
∫ t2

t1

[(
ẋ(t), ω̇(t)

)
+
(
ẋ(t), ω(t)

)
+
(
Aẋ(t), A∗

1ω(t)
)

+
(
u1(t) + qu2(t) + f(t), ω(t)

)]
dt, t1 < t2, ∀ω ∈ B∗ ((0, T );H) (4)

considered ∀t1, t2 ∈ [0, T ] (if T = ∞, then t2 < T ).
Let us assume that problem (1)-(2) for any u1 ∈ L2 ((0, T );H) and u2 ∈

L2(0, T ) has a unique solution from the e.c. If the operator A1A is such
that the solution to problem (1)-(2) under any controls belongs to the e.c.
only on a finite segment [0, T ], then problem (1)-(3) should be interpreted
as the problem of finding a control such that the solution to problem (1)-(2)
belonged to the e.c. and at the same time, functional (3) took a minimum
value. Then problem (1)-(3), due to the strong convexity of functional (3),
has a unique solution, i.e. the only pair (u1, u2) , u1 ∈ L2 ((0, T );H) , u2 ∈
L2(0, T ) of controls that implements the minimum of functionality (3).

The problem of optimal control synthesis is to find controls u0
n, n = 1, 2

that satisfy the following conditions:

(i) ∀t ∈ [0, T ] controls u0
n are functions of w(t) = {x(t), ẋ(t)}, i.e. u0

n =
u0

n[t] ≡ u0
n (t, w(t));

(ii) controls u0
1[t] ∈ L2 ((0, T );H) , u0

2[t] ∈ L2(0, T ), ∀x ∈ B ((0, T );H);

(iii) when un(t) = u0
n[t] problem (1)-(2) has a unique solution from

B ((0, T );H);

(iv) on this pair (u1, u2) of controls un(t) = u0
n[t], n = 1, 2, functional (3)

reaches its minimum value.

Let us start solving the formulated problem using the dynamic program-
ming method. Let us denote

V ≡ V [t, x(t), ẋ(t)] ≡ V [t, w(t)] = min
un

I [t, u1(·), u2(·)] , t ≥ 0.

Then, by virtue of the optimality principle, we obtain ∀t ∈ [0, T ]

V [t, w(t)] = min
un(τ)

{∫ t+∆t

t

[
a2(t) ∥x(τ)−Ψ0(τ)∥2 + a3(t) ∥ẋ(τ)−Ψ1(τ)∥2

+a4 ∥u1(τ)∥2 + a5u
2
2(τ)

]
dτ + V [t+ ∆t, w(t+ ∆t)]

}
. (5)
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Note that by definition the functional V is defined ∀t ∈ [0, T ] onB ((0, T );H)
and is a continuous function of t ∈ [0, T ]. Let us assume that ∀t ∈ [0, T ]
the functional V is almost strongly differentiable with respect to w(t) in the
norm of H ⊕H and have the usual summable derivative with respect to t.
Then, we have

V [t+ ∆t, w + ∆w] − V [t, w] = ∂V

∂t
∆t+ Φ(t, w,∆w) + o1, (6)

where o1 is an infinitesimal quantity depending on t and w(t) in the norm of
space H ⊕H, o1

∆t → 0 as ∆t → 0, Φ is the Frechet derivative, calculated at
the point (t, w) and being a continuous functional in H⊕H, i.e. ∀t ∈ [0, T ],
Φ is representable in the form

Φ(t, w,∆w) =
(
ϑ1(t),∆x(t)

)
+
(
ϑ2(t),∆ẋ(t)

)
, (7)

where ϑn(t) ∈ H, n = 1, 2, ∀t ∈ [0, T ]. Let us additionally assume that
ϑ2 ∈ B∗ ((0, T );H). For

(
ϑ2(t),∆ẋ(t)

)
we obtain an expression that takes

into account identity (4):(
∆ẋ(t), ϑ2(t)

)
=
∫ t+∆t

t

[(
ẋ(τ), ϑ̇2(τ)

)
+α

(
ẋ(t), ϑ2(t)

)
+
(
Ax(τ), A∗

1ϑ2(τ)
)

+
(
u1(τ) + qu2(τ) + f(τ), u2(τ)

)]
dτ −

(
ẋ(t+ ∆t),∆ϑ2(t)

)
. (8)

Now, passing to the limit at ∆t → 0, from (5)-(8), we obtain the following
problem for determining the functional V (almost ∀t ∈ [0, T ]):

∂V

∂t
= min

un(t)

[
F (t, w(t), ϑ(t)) + a4 ∥u1(t)∥2 + a5u

2
2(t)

+
(
u1(t) + qu2(t) + f(t), ϑ2(t)

)]
,

F
(
t, w(t), ϑ(t)

)
=

(
ẋ(t), ϑ1(t)

)
+
(
Ax(t), A∗

1ϑ2(t)
)

+ a2 ∥x(t) − ψ0(t)∥2

+a3 ∥ẋ(t) − ψ1(t)∥2 , ϑ(t) = {ϑ1(t), ϑ2(t)} , (9)

V [T,w(T )] = a0 ∥x(T ) − ξ0∥2 + a1 ∥ẋ(T ) − ξ1∥2 . (10)

Under the above assumptions, equation (9) should satisfy almost ∀t ∈ [0, T ].
Equation (9) is a nonlinear equation in private functional industries. If there
is an optimal triple

(
V 0, u0

1, u
0
2
)
, then in order to justify the above diagram

of the dynamic programming method, it is necessary to establish execution
for V 0 the following conditions:
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1) V 0[t, w(t)] > 0, ∀t ∈ [0, T ], ∀x ∈ B ((0, T );H);
2) V 0[t, w(t)], ∀t ∈ [0, T ] is a continuous functional on B ((0, T );H) and

continuously depends on t;
3) V 0[t, w(t)] is Frechet differentiable; ∂V

∂t is summable by [0, T ];
ϑ1(t) ∈ H, ∀t ∈ [0, T ], ϑ2 ∈ B∗ ((0, T );H).

From equation (9), it is easy to determine the law of "optimal" control:

u1(t) = − 1
2a4

ϑ2(t), u2(t) = − 1
2a5

(
q, ϑ2(t)

)
. (11)

2 Systems of operator equations and methods for their
solutions

We search the solution of problem (9)-(10) in the form

V [t, w(t)] =
(
K(t)w(t), w(t)

)
H⊕H

+
(
φ(t), w(t)

)
H⊕H

+ η(t), (12)

where η(t) is a scalar function, the operator matrix K(t) and vector φ(t)
have the form:

K(t) =
((

K11(t)
K12(t)

) (
K12(t)
K22(t)

))
, φ(t) = {φ1(t), φ2(t)} .

It is assumed that ∀t ∈ [0, T ] the operators Kij , i, j = 1, 2 are self-adjoint
in H and K11(t) > 0, K22(t) > 0. Since the calculations given below are
formal, we do not clarify the smoothness of operators Kij(t) and functions
for now φ(t), η(t). According to formulas (6) and (7), we easily find

ϑ(t) = 2K(t)w(t) + φ(t). (13)

Substituting the values for ∂V
∂t and ϑ(t) from (12) and (13) into (9) and (10),

we obtain the following systems of differential operator Riccati equations
and linear equations (∀x ∈ D(A), bi = a−1

5 q (q,Ki2x) , i = 1, 2; K12y ∈
D (A∗

1) , K22y ∈ D (A∗
1) , ∀y ∈ H)

(
K ′

11x, y
)

+ 2 (Ax,A∗
1K12y)

−
(
a−1

4 K12x+ b1,K12y
)

+ a2x, y) = 0,(
K ′

12x, y
)

+ (Ax,A∗
1K22y) + a (x,K12y) + (K12x, y)

−
(
a−1

4 K12 + b1,K22y
)

= 0,(
K ′

22x, y
)

+ 2a (x,K22y) + 2 (K12x, y)
−
(
a−1

4 K22x+ b2,K22y
)

+ a3(x, y) = 0,

(14)
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(K11(T )x, y) = a0(x, y), (K12(T )x, y) = 0, (K22(T )x, y) = a1(x, y), (15)
(φ′

1, x) + (A∗
1φ2, Ax) −

(
a−1

4 φ2,K12x
)

− (φ2, b1) − 2a2 (ψ0, x) + 2 (f,K12x) = 0,

(φ′
2 + φ1 − 2a3ψ1, y) + a (φ2, y) −

(
a−1

4 φ2,K22y
)

− (φ2, b2) + 2 (f,K22y) = 0,

(16)

(φ1(T ), x) = −2a0 (ξ0, x) ; (φ2(T ), y) = 2a1 (ξ1, y) , ∀y ∈ H, (17)

η(t) = a0 ∥ξ0∥2 + a1 ∥ξ1∥2

−
∫ t

T

[
a2(τ) ∥ψ0, (τ)∥2 + a3(τ) ∥ψ1, (τ)∥2 e+ (f(τ), φ2(τ))

− 1
4a4

∥φ2(τ)∥2 − 1
4a5

(q, φ2(τ))2
]
dτ. (18)

Thus, to determine the optimal pair (u1, u2), one first needs to solve the
nonlinear problem (14)-(15), and then with obtained K12 and K22 solve
the linear problem (16)-(17). With known operators Kij(t) and functions
φi(t) we find the required vector ϑ(t). Finally, substituting the already
found value ϑ2(t) from (13) into (11), we obtain the law of the synthesizing
optimal pair of (u1, u2) controls.

In system (14)-(18), the main difficulty is the choice of a function space
and the study of the regularity of the operator K(t) in it. In this paper,
using the method of spectral decomposition of non-self-adjoint operators,
explicit representations of the operator K(t) are constructed, its properties
and related issues of optimal control synthesis are studied. If f = ψ0 =
ψ1 = ξ0 = ξ1 = 0, then formally we assume that η(t) = φi(t) = 0, i = 1, 2.
Consequently, system (14)-(15) must be solved independently of the others.

3 Application of the spectral decomposition method

Additionally, we propose that the eigen and associated elements (e.a.e.) xk
h

of the formal operator A1A satisfy the equations(
Axk

h, A
∗
1y
)

+
(
λ2

kx
k
h + xk

h−1, y
)

= 0, ∀xk
h ∈ D(A), ∀y ∈ D (A∗

1) ,

where is k = 1, 2, . . . and h = 0, . . . ,mk − 1, sup
k
mk < ∞, with mk being

the multiplicity of the proper element xk
0 and it is assumed that xk

i = 0
for i < 0, k = 1, 2, . . .; eigenvalues λ2

k are real and λk ≥ 0, k = 1, 2, . . .;
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λk → ∞ as k → ∞; e.a.e. ϑl
ν conjugate operator A∗A∗

1 satisfy the following
relations: ϑe

ν ∈ D (A∗
1) (ϑe

i = 0, i < 0, e = 1, 2, . . .) ,

(Ax,A∗
1ϑ

e
ν) +

(
x, λ2

kϑ
e
ν + ϑe

ν−1

)
= 0, ∀x ∈ D(A);

and the system
(
xk

h, ϑ
e
ν

)
is biorthogonal and forms a Riesz basis in H. If

A∗
1 = A∗ = A, then A2 the operator is considered to be itself conjugate,

k = 1, 2, . . . its eigenvectors φk form a complete orthonormal system.
Let us assume that A∗

1 = A∗ = A, q = a5 = a = 0, then we search the
solution to system (14)-(15) in the form

K(t) =
∞∑

k=1

Sk(t)φk ⊗ φk, K(t) = ∥Kij(t)∥ , K21(t) = K12(t),

Sk(t) =
(
αk(t) βk(t)
βk(t) γk(t)

)
, i, j = 1, 2. (19)

Then, assuming x = φk, y = φl, from (14) and (15) we obtain the
following Cauchy problem for a countable system of ordinary differential
equations of Riccati type, after replacing the variable t → T − t which (we
keep the previous notations for the unknowns αk, βk, γk) has the form:

α′
k(t) + 2λ2

kβk(t) + a−1
4 β2

k(t) − a2(t) = 0
β′

k(t) + λ2
kγk(t) − αk(t) + a−1

4 γk(t)βk(t) = 0
γ′

k(t) − 2βk(t) + a−1
4 γ2

k(t) − a3(t) = 0,

(20)

αk(0) = a0, βk(0) = 0, γk(0) = a1. (21)

The local solvability of the system of nonlinear equations (20) is proven.
Let us introduce a Banach space mC[0, T ] over a set of arbitrary ones with
continuous [0, T ]k vector functions (k = 1, 2, . . ., h = 0, . . . ,mk − 1)
z(t) =

{
zk

h(t)
}

=
{
αk

h(t), βk
h(t), γk

h(t)
}

such that

∥z∥mc ≡ sup
k,h

max
t

∣∣∣λ−2
k αk

h(t)
∣∣∣+ sup

k,h
max

t

∣∣∣λ−1
k βk

h(t)
∣∣∣+ sup

k,h
max

t

∣∣∣γk
h(t)

∣∣∣ < ∞.

Moreover, if mk = 1, then h = 0. Let us put z(t) =
{
zk

h(t)
}

,

z(t) =
{
αk

h(t), βk
h(t), γk

h(t)
}
, αk(t) = αk

0(t),

βk(t) = βk
0 (t), γk(t) = γk

0 (t).
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Let
{
φk

h

}
be a complete orthonormal system in H. By H (λα) we de-

note the Hilbert space of all elements x defined by series of the form

x =
∞∑

k=1

∑
h

λα
ka

k
hφ

k
h, ∀a =

{
ak

h

}
∈ lα2 . For any two elements x and y

from H(λ) we set

(x, y)H(λα) =
∞∑

k=1

∑
h

λ2α
k ak

hb
k
h = (a, b)lα2

; ∥x∥2
H(λα) = (x, x)H(λα).

The following has been proven.

Theorem 3.1. Let the conditions (A) hold and A∗
1 = A∗ = A, q = a =

a5 = 0, T < ∞. Then there is an interval [T0, T ] ⊆ [0, T ] in which the
problem (14)-(15) has a unique positive-definite solution K(t) = ∥Kij(t)∥
in H ⊕ H represented by the series from (19). The indicated series for
K11(t), K12(t) and K22(t) converge uniformly in t ∈ [T0, T ], respectively, in
the norms L

(
H
(
λ2
)
, H
)
, L (H(λ), H) and L(H,H), their sums are self-

adjoint operators in H; K11(t), K22(t), ∀t ∈ [T0, T ] are positive definite in
H. The relations are valid ∆ = [T0, T ],

K11(t), K12(t) /∈ L(H,H), K11(t) ∈ C
(
∆; L

(
H
(
λ2
)
, H
))
,

K12(t) ∈ C (∆; L (H(λ), H)) ,

K22(t) ∈ C (∆; L(H,H)) , K(t) ∈ C
(
∆; L

(
H
(
λ2
)

⊕H(λ), H ⊕H
))
,

K ′
11(t) ∈ L2

(
∆; L

(
H
(
λ3
)
, H
))
, K ′

12(t) ∈ L2

(
∆; L

(
H
(
λ2
)
, H
))
,

K ′
22(t) ∈ L2 (∆; L (H(λ), H)) ,

K ′(t) ∈ L2

(
∆; L

(
H
(
λ3
)

⊕H
(
λ2
)
, H ⊕H

))
.

In the particular case, important in practice, when in the problem a2(t) =
a3(t) = 0, the solution to problem (2.18)-(2.19) is obtained in the explicit
form:

αk(t) = zk(t)
∆k(t) , βk(t) = − yk(t)

∆k(t) , γk(t) = xk(t)
∆k(t) , (22)

zk(t) =
(
λ2

k

a0
− 1
a1

)
sin2 λk(T − t)+ 1

4a4λk
sin 2λk(T − t)+ T − t

2a4
+a−1

1 > 0,
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yk(t) = 1
2λk

(
λ2

k

a0
− 1
a1

)
sin 2λk(T − t) − 1

2a4λ2
k

sin2 λk(T − t),

xk(t) = T − t

2a4λ2
k

− 1
λ2

k

(
λ2

k

a0
− 1
a1

)
sin2 λk(T − t)− 1

4a4λ
3
k

sin 2λk(T − t)+ 1
a0

> 0,

∆k(t) ≡ xk(t)zk(t) − y2
k(t) = 1

4a4λ
3
k

(
λ2

k

a0
− 1
a1

)
sin 2λk(T − t)

+λ−2
k

(
λ2

k

a0
+ T − t

2a4

)(
T − t

2a4
+ 1
a0

)
− 1

4a4λ4
k

sin2 λk(T − t) > 0,

ak(t)γk(t) − β2
k(t) ≡ 1 > 0, k = 1, 2, . . .

Using the above mentioned method for solving the problem (20)-(21), an
explicit solution to the system of Riccati equations can also be constructed
in the case when q ̸= 0, a2(t) = a3(t) = 0. We will not dwell on this here.

Note that for the operators S(t)and K(t), formed using the solution (22)
of problem (14)-(15), when a2(t) = a3(t) = 0 asserting the theorem, are
valid throughout the entire space mC[0, T ], which shows the naturalness of
the introduced space mC[0, T ] for the solvability of problem (14)-(15).

In the case when the operator A1A is not self-adjoint and its s.e. forms
the Riesz basis, the application of the spectral decomposition method to the
solution of problems (14)-(18) requires a special construction, but in this
case it is possible to prove similar theorems on the solvability of the Riccati
operator equations, and finally, it is possible to substantiate the dynamic
programming method.

4 Application to the problem of optimal design of a
circular arch

Let us consider a curved thin rod of constant cross-section, the axis of which
is an arc with radius a. The rod is subject to uniform unilateral external
pressure p; α is bending rigidity of the rod [3]. Then, the dynamics of
displacement u = u(t, x) of a particle of a curved thin rod (convex circular
arch) in the presence of an additional external force F (t, x) can be descibed
as:

utt −Au = q1(x)p1(t) + q2(x)p2(t) + f(t, x) ≡ F (t, x), (23)
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where A is a sixth-order differential operator defined as Au ≡ u(6) +α1u
(4) +

α2u
′′, α1 = 2

a2 + pa
α , α2 = 1

a4 + p
αa . The initial and boundary conditions are

u(0, x) = φ1(x), ut(0, x) = φ2(x),
u(t, 0) = ux(t, 0) = uxxx(t, 0) = 0, x = 0,
u(t, l) = ux(t, l) = uxx(t, l) = 0, x = l.

(24)

An investigation shows that the operator A associated with the boundary
value problem (23)-(24) is a self-adjoint operator in L2(0, l) and has in it a
linearly independent orthonormal system of basis functions corresponding
to the eigenvalues. Assuming v = eλx, v(k) = λkeλx, k = 0, 1, . . . , 6, from
boundary value problem Av + µ6v = 0, α1 > 0, α2 > 0, v(0) = v′(0) =
v′′′(0) = 0; v(l) = v′(l) = v′′(l) = 0 we obtain the following characteristic
equation for λ:

λ6 + α1λ
4 + α2λ

2 + µ6 = 0. (25)

Let us put λ2 = γ, γ = ν − α1
3 . Then, equation (25) is reduced to the

following cubic equation:

ν3 + pν + q = 0, p = α2 − α2
1

3
, q = 2α3

1
27

− α1α2

3
+ µ6, (26)

where positive numbers α1 and α2 are determined from equation (23). Now,
using the Cardan formula, we can write out the solution to equation (26):

ν =
3

√√√√−q

2
+

√
q2

4
+ p3

27
+

3

√√√√−q

2
−

√
q2

4
+ p3

27
.

If: 1) D = −108
(

q2

4 + p3

27

)
< 0, then equation (26) has one real and two

conjugate complex roots; 2) D = 0, then all roots are real, and two of them
are equal to each other; 3) D > 0, then equation (26) has three distinct real
roots.

Since µ is an eigenvalue of the operator A and µk → ∞ as k → ∞, we
can assume that after a certain index k the discriminant D < 0. Then,
equation (26) has one real root and two mutually conjugate complex roots.
However, note that the expression q2

4 + p3

27 and number q after some index k
are always positive, then the corresponding root of equation (26) will be a
negative real number. The other two roots are mutually conjugate complex.
On the other hand, γ = ν − α1

3 then γ, corresponding to negative ν will
also be negative, and complex conjugate roots will correspond to complex
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conjugate roots. So we conclude that one of the roots γ is negative, the
other two are complex conjugate.

Now from the substitution λ2 = γ it follows that for negative γ we have:
λ = ±i

√
−γ. Consequently, all roots λ are complexly conjugate. Thus, we

obtain three series of complex conjugate roots of the characteristic equation
(25). Let us denote them by λnk = ξnk + iθnk, n = 1, 2, 3; k = 1, 2, 3, . . ..
The solution of the differential equation Av+µ6v = 0 corresponding to λnk

has the form:

vk(x) = eξ1k (C1k cos θ1kx+ C2k sin θ1kx)

+eξ2k (C3k cos θ2kx+ C4k sin θ2kx) + eξ3k (C5k cos θ3kx+ C5k sin θ3kx) .

Constant parameters Cmk, m = 1, 2, 3, 4, 5, 6 are determined from the bound-
ary conditions.

In the problem (23)-(24), we take as control functions p1(t), p2(t), f(t, x).
The functions q1(x) and q2(x) on the right side of (23) are considered given
and characterize the shape (geometric) of external forces acting on the
arch along the x-axis. The function f(t, x) expresses an arbitrary external
force. Note that in many control problems with a boundary (inhomogeneous
boundary conditions), using a special substitution the problem is reduced
to a homogeneous one, but with the right-hand side of the type of F (t, x),
such images we can assume that the case when control is carried out from
the boundary is also considered. The integral is taken as an optimality
criterion:

I [t0, p1(t), p2(t), f(t, ·)] =
∫ T

t0

∫ l

0

[
α1u

2 + α2u
2
t + β0f

2(t, x)
]
dxdt

+
∫ T

t0

[
β1p

2
1(t) + β2p

2
2(t)

]
dt, α2

1 + α2
2 ̸= 0, β2

0 + β2
1 + β2

2 ̸= 0. (27)

Required to find control functions f(t, x) = f(t, w), p1(t) = p1(t, w),
p2(t) = p2(t, w) as a vector function of the state w = w(t, x) = {u(t, x), ut(t, x)}
of the solution to problem (23)-(24) and such that the functional (27) takes
the minimum possible value (T − fixed).

Problem (23), (24), (27) is a special case of problem (1)-(4), therefore its
solution is obtained from the above diagram.

In structures of sufficiently large height or length, determining the pa-
rameters of stable modes and studying a model for the optimal design of a
circular arch are an important task of modern applied science.
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