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Abstract. A source identification problem for a parabolic equation with mixed boundary
condition is studied. Stability estimates for the solution of identification problem with
mixed boundary conditions are obtained. Numerical algorithms for solving this inverse
problem are proposed. Stability estimates for difference schemes are established. The
numerical result in test example is presented.

Keywords. Mixed boundary condition, source identification problem, difference
schemes, stability, well-posedness, stability estimates.

2010 Mathematics Subject Classification. 34B10, 35K10, 49K40.

1 Introduction

Source identification problems (SIPs) for parabolic equations (PEs) are fundamen-
tal to the success and accuracy of modeling efforts for many real processes. They
underpin the ability to understand, predict, and manage complex systems and phe-
nomena effectively.

Methods of solving SIPs and approximations of nonlocal problems for PEs were
investigated intensively by several authors (see [1–21, 23] and references therein).

In this paper, we study source identification problem for multi-dimensional PE.
Let Ω = (0, 1) × (0, 1) × · · · × (0, 1) with boundary S = S1 ∪ S2, Ω = Ω ∪ S,
where

S = {y = (y1, · · · , yn) | yi = 0 or yi = 1, 0 ≤ ys ≤ 1, s ̸= i, 1 ≤ i ≤ n} ,
S1 = {y = (y1, · · · , yn) | yi = 0, 0 ≤ ys ≤ 1, s ̸= i, 1 ≤ i ≤ n} ,
S2 = {y = (y1, · · · , yn) | yi = 1, 0 < ys ≤ 1, s ̸= i, 1 ≤ i ≤ n} .

The first author was supported by grant no. AP19676663 of the Science Committee of the Ministry
of Science and Higher Education of the Republic of Kazakhstan.
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Let L2(Ω) and W 2
2 (Ω) be the Hilbert spaces of integrable functions u(y), de-

fined on Ω, equipped with the suitable norms

∥u∥L2(Ω) =

{ ∫
y∈Ω

|u(y)|2 dy1 . . . dyn

} 1
2

,

∥u∥W 2
2 (Ω) =

{ ∫
y∈Ω

(
|u(y)|2 +

n∑
i=1

n∑
j=1

∣∣uyiyj (y)∣∣2
)
dy1 . . . dyn

} 1
2

.

Assume that φ ∈ L2(Ω), ψ ∈ W 2
2 (Ω), f ∈ Cα(L2(Ω)) are given functions,

and ai : Ω → R+, i = 1, . . . , n are known smooth functions.
In the region [0, 1] × Ω, we study the following SIP for multi-dimensional PE

with mixed boundary conditions

ut(t, x)−
n∑
i=1

(ai(x)uxi(t, x))xi + σu(t, x) = f(t, x) + p(x),

x = (x1, · · · , xn) ∈ Ω, 0 < t < 1,
∂

∂−→n u(t, x) = 0, x ∈ S1, u(t, x) = 0, x ∈ S2, 0 < t < 1,

u(0, x) =
r∑

k=1
µku(sk, x) + ψ(x), u(1, x) = φ(x), x ∈ Ω,

(1)

where −→n is the normal vector to Ω at the corresponding boundary point.
The differential expression

Axv(x) = −
n∑
i=1

(ai(x)vxi(x))xi + σv(x)

defines the self-adjoint positive definite (SAPD) operatorAx, acting on the Hilbert
space L2(Ω), with the domain

D(Ax) =

{
v | v ∈W 2

2 (Ω),
∂v

∂−→n
(x) = 0 on S1, v(x) = 0 on S2

}
.

Therefore, the SIP (1) for the multi-dimensional PE can be reduced to the abstract
problem (5), (7), (8) in paper [12] for H = L2(Ω). By using stability estimates of
Theorem 1.1, we can formulate the following theorem on stability of SIP (1).

Theorem 1.1. Let s1, µ1, s2, µ2, ..., sr, µr be given numbers so that

r∑
k=1

|µk| < 1, 0 ≤ s1 < s2 < . . . < sr < 1.
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Assume that φ,ψ ∈W 2
2 (Ω) and f ∈ Cα(L2(Ω)) are given. Then, for the solution

of SIP (1) for multi-dimensional PE, the following stability estimates hold

∥p∥L2(Ω) ≤M

[
∥φ∥W 2

2 (Ω) + ∥ψ∥W 2
2 (Ω) +

1
α
∥f∥Cα(L2(Ω))

]
,

∥v∥C(L2(Ω)) ≤M
[
∥φ∥L2(Ω) + ∥ψ∥L2(Ω) + ∥f∥C(L2(Ω))

]
,

where positive number M does not depend on f , ψ, φ and α.

2 Difference schemes

We will use the set of uniform grid points

[0, 1]τ = {tk = kτ, k = 0, 1, · · · , N, Nτ = 1}.

To discretize the problem (1) we use an algorithm with two steps. Firstly, we
define grid spaces

Ω̃h = {x = xm = (h1m1, · · · , hnmn); m = (m1, · · · ,mn),

mj = 0, · · · , Nj , hjNj = 1, j = 1, · · · , n} ,

Ωh = Ω̃h ∩ Ω, Sh
1 = Ω̃h ∩ S1, S

h
2 = Ω̃h ∩ S2.

Let us introduce the difference operator Ax
h by formula

Ax
hv

h(x) = −
n∑
i=1

(
ai(x)v

h
xi
(x)
)
xi,ji

+ σvh(x), (2)

which acts in space of grid functions vh(x) and satisfies the condition vh(x) = 0
for all x ∈ Sh

2 and Dvh(x) = 0 for all x ∈ Sh
1 .

Applying Ax
h, we arrive at the multi-point nonlocal boundary value problem

(BVP) for some infinite system of ordinary differential equations. Secondly, by
using [12, Eqn. (26), p.1922], we get the first order of accuracy difference scheme
(ADS) 

τ−1
(
vhk (x)− vhk−1(x)

)
+Ax

hv
h
k (x) = fh(tk, x) + ph(x),

1 ≤ k ≤ N, x ∈ Ω̃h,

vhN (x) = φh(x), vh0 (x) =

r∑
i=1

µiv
h
li
(x) + ψh(x), x ∈ Ω̃h.

(3)
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Applying [12, Eqns. (37),(38),(39), p.1925], we get the second order of ADS

τ−1
(
vhk (x)− vhk−1(x)

)
+Ax

h

(
I +

τAx
h

2

)
vhk (x)

=

(
I +

τAx
h

2

)(
fh(tk− τ

2
, x) + ph(x)

)
, 1 ≤ k ≤ N, x ∈ Ω̃h,

vhN (x) = φh(x), x ∈ Ω̃h,

vh0 (x) =

r∑
i=1

{
µi (1 − ρi) v

h
li
(x) + µiρiv

h
li+1(x)

}
+ ψh(x), x ∈ Ω̃h.

(4)

Denote by L2h = L2(Ω̃h) and W 2
2h =W 2

2 (Ω̃h) the spaces of the grid functions
uh(x) = {u(h1m1, · · · , hnmn)} defined on Ω̃h, equipped with the corresponding
norms

∥∥∥uh∥∥∥
L2h

=

∑
x∈Ω̃h

|uh(x)|2h1 · · ·hn

1/2

,

∥∥∥uh∥∥∥
W 2

2h

=
∥∥∥uh∥∥∥

L2h
+

∑
x∈Ω̃h

n∑
r=1

∣∣∣(uh(x))xrxr,mr

∣∣∣2 h1 · · ·hn

1/2

,

and by Cτ (L2h) = C([0, 1]τ , L2h) the Banach space of L2h-valued grid functions
uτ = {uk}N1 with the suitable norm ∥uτ∥Cτ (L2h)

= max
1≤k≤N

∥uk∥L2h .

Denote by C([0, 1]τ , L2h) the linear space of grid functions wτ = {wk}N1
with values in the Hilbert space L2h, and by Cτ (H) = C([0, 1]τ , H), Cα

τ (H) =
Cα([0, 1]τ , H) the Banach spaces of bounded grid functions with the norms

∥wτ∥Cτ (L2h) = max
1≤k≤N

∥wk∥L2h ,

∥w∥Cα
τ (L2h) = ∥wτ∥Cτ (L2h) + max

1≤k<k+r≤N

∥wk+r − wk∥L2h

(rτ)α
.

Theorem 2.1. Suppose that τ and |h| =
√
h2

1 + · · ·+ h2
n are sufficiently small

positive numbers, φh ∈ L2h, ψh ∈ W 2
2h and

{
fhk
}N

1 ∈ Cα
τ (L2h). Then, for the

solution of DSs (3) and (4), the following stability estimates hold∥∥∥ph∥∥∥
Cτ (L2h)

≤M

[∥∥∥φh
∥∥∥
L2h

+
∥∥∥ψh

∥∥∥
W2h

+
1
α

∥∥∥∥{fhk}N

1

∥∥∥∥
Cα
τ (L2h)

]
,
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∥∥∥∥{vhk}N

1

∥∥∥∥
Cτ (L2h)

≤M

[∥∥∥φh
∥∥∥
L2h

+
∥∥∥ψh

∥∥∥
L2h

+

∥∥∥∥{fhk}N

1

∥∥∥∥
Cτ (L2h)

]
,

where M is independent of
{
fhk
}N

1 , ψh(x), φh(x) and τ .

The proof of Theorem 2.1 is based on Theorems 3.1 and 3.2 of paper [12]
on stability estimate for solutions of corresponding DSs for approximate solution
of abstract SIP (5), (7), (8) and the theorem on the coercivity inequality for the
solution of the elliptic difference problem in L2h (see [22]).

3 Numerical Algorithm

For test example, we consider the SIP
vt(t, x)− (1 + x2)vxx(t, x)− 2x · vx(t, x) + v(t, x)

= f(t, x) + p(x), 0 < x < π, 0 < t < 1,
v(1, x) = φ(x), v(0, x) = v(0.3, x) + ψ(x), 0 ≤ x ≤ π,

v(t, 0) = 0, vx(t, π) = 0, 0 ≤ t ≤ 1

(5)

for one-dimensional parabolic PDE. Here,

f(t, x) =
(
e−t − e−1

) (
(1 + x2) cosx+ 2x sinx

)
+ e−1(cosx+ 1),

0 < x < π, 0 < t < 1,
φ(x) = e−1 (cosx+ 1) , ψ(x) =

(
1 − e−0.3

)
(cosx+ 1) , 0 ≤ x ≤ π.

It is easy to check that the pair of functions{
e−1 ((1 + x2) cosx+ 2x sinx+ cosx+ 1

)
, e−t(cosx+ 1)

}
satisfies SIP (5).

An algorithm of finding the solution of problem (5) consists of three stages. In
the first stage, we search the solution of SIP in the form

v(t, x) = u(t, x) + (Ax)−1 (p(x)) + v(1, x),

where u(t, x) is solution of the following auxiliary nonlocal BVP

ut(t, x)− (1 + x2)uxx(t, x) + 2x · ux(t, x) + u(t, x)

= e−1
(
(1 + x2) cosx+ 2x sinx+ cosx+ 1

)
+ f(t, x),

0 < x < π, 0 < t < 1,
u(1, x)− u(0.3, x) = ψ(x), 0 ≤ x ≤ π,

ux(t, 0) = 0, ux(t, π) = 0, 0 ≤ t ≤ 1.

(6)



46 C. Ashyralyyev and T. Ashyralyyeva

Then, in the second stage, we find p(x) by

p(x) = e−1 ((1 + x2) cosx+ 2x sinx+ cosx+ 1
)
.

In the third stage, we put p(x) in the right side of equation (5) and solve that
problem for v(t, x).

We introduce the set of grid points

[0, 1]τ × [0, π]h = {(tk, xn) | tk = kτ, k = 1, · · · , N − 1, Nτ = 1,
xn = nh, n = 1, · · · ,M − 1, Mh = π}.

We use notation l =
[γ
τ

]
for greatest integer value of γ

τ and ρ = γ
τ − l.

So, we get the first order of ADS for SIP (5)
vkn−vk−1

n

τ − (1+x2
n)(vkn+1−2vkn+vkn−1)

h2 − xn(vkn+1−vkn−1)
h + vkn

= f(tk, xn) + p(xn), k = 1, · · · , N, n = 1, · · · ,M − 1,
vNn = φn, v

0
n − vln = ψn, n = 0, · · · ,M,

vk0 = vk1 , v
k
M = 0, k = 0, · · · , N.

(7)

Then, p(xn) can be obtained by

p(xn) = −
(1 + x2

n)
(
uNn+1 − 2uNn + uNn−1

)
h2 −

xn
(
uNn+1 − uNn−1

)
h

+ uNn , (8)

where
{
ukn
}

is the solution of the difference problem

uk
n−uk−1

n

τ − (1+x2
n)(uk

n+1−2uk
n+uk

n−1)
h2 − xn(uk

n+1−uk
n−1)

h + ukn

= f(tk, xn) +
(1+x2

n)(φn+1−2φn+φn−1)
h2 +

xn(φn+1−φn−1)
h − φn,

k = 1, · · · , N, n = 1, · · · ,M − 1,
u0
n − uln = ψn, n = 0, · · · ,M,

uk0 − ukM = 0, ukM = 0, k = 0, · · · , N,

(9)

which is the first order of ADS for approximate solution of the nonlocal BVP (6).
For computational reasons it is convenient to write (9) in the following matrix

form
Anun+1 +Bnun + Cnun−1 = Iθn, n = 1, · · · ,M − 1,

u0 = u1, uM =
−→
0 .

(10)
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Here, θn is a column vector, An, Bn, Cn are square matrices with (N + 1) rows
and columns:

An =


0 . . . 0 0

0
anR 0

0

 , Cn =


0 . . . 0 0

0
cnR 0

0

 ,

Bn =



1 0 0 0 · · · −1 · · · 0 0 0 0
bn d 0 0 · · · 0 · · · 0 0 0 0
0 bn d 0 · · · 0 · · · 0 0 0 0
...

...
...

... · · · · · · · · ·
...

...
...

...
0 0 0 0 · · · 0 · · · 0 bn d 0
0 0 0 0 · · · 0 · · · 0 0 bn d


,

where R is N ×N identity matrix and

an = −(1 + x2
n)h

−2 − xnh
−1, d = 1

τ ,

bn = 1 + d+ 2(1 + x2
n)h

−2, cn = −(1 + x2
n)h

−2 + xnh
−1,

θn =


θ0
n
...
θNn


(N+1)×1

, un±1 =


u0
n±1
...

uNn±1


(N+1)×1

, un =


u0
n
...
uNn


(N+1)×1

,

I is the (N + 1)× (N + 1) identity matrix, as well as

θ0
n = ψn, n = 1, · · · ,M − 1,

θkn = f(tk, xn)− (1+x2
n)(φn+1−2φn+φn−1)

h2 − xn(φn+1−φn−1)
h + φn,

k = 1, · · · , N, n = 1, · · · ,M − 1.

We search the solution of (10) by the recurrent formula ([17])

un = αn+1un+1 + βn+1, n =M − 1, · · · , 1,

where αn are (N + 1) × (N + 1) square matrices and βn are column vectors
with (N + 1) elements. For the solution of difference equation (10) we use the
following formulas for αn and βn

αn = −(Bn + Cnαn−1)
−1An,

βn = (Bn + Cnαn−1)
−1(θn − Cnβn−1), n = 1, . . . ,M − 1,
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where α1 = I and β1 is a zero vector.
Second, applying appropriate approximation formulas for derivatives in the

nonlocal BVP (5), we get the second order of ADS in t and x

vkn−vk−1
n

τ +
q2(vkn+1−vkn−1)

2h +
q3(vkn+1−2vkn+vkn−1)

h2

+ τq0
2
(vkn+2−3vkn+1+3vkn−vkn−1)

h3 + τq1
2
(vkn+2−4vkn+1+6vkn−4vkn−1+vkn−2)

h4

= θkn + p(xn)− τ
2 · (1+x2

n)(p(xn+1)−2p(xn)+p(xn−1))
h2

− τ
2 · xn(p(xn+1)−p(xn−1))

h + τp(xn)
2 ,

k = 1, · · · , N, n = 2, · · · ,M − 2,
−3vk0 + 4vk1 − vk2 = 0, vkM = 0,
10vk0 − 15vk1 + 6vk2 − vk3 = 0, k = 0, · · · , N,
vNn = φn, v

0
n − (1 − ρ)vln − ρvl+1

n = ψ(xn), n = 0, · · · ,M,

(11)

where

qn1 = (1 + x2
n)

2, qn0 = (1 + x2
n) (2xn − 2)

qn3 = −(1 + x2
n) +

τ
2

(
−6x2

n + 4xn−3
)
, qn2 = 2xn + 5xnτ.

Then, we calculate p(xn) by using (8), with
{
ukn
}

being the solution of the differ-
ence problem

uk
n−uk−1

n

τ +
qn2 (u

k
n+1−uk

n−1)
2h +

qn3 (u
k
n+1−2uk

n+uk
n−1)

h2

+ τ
2
qn0 (u

k
n+2−2uk

n+1+2uk
n−1−uk

n−2)
2h3 + τ

2
qn1 (u

k
n+2−4uk

n+1+6uk
n−4uk

n−1+uk
n−2)

h4

= θkn, k = 1, · · · , N, n = 2, · · · ,M − 2,
−3uk0 + 4uk1 − uk2 = 0, ukM = 0,
10uk0 − 15uk1 + 6uk2 − uk3 = 0, k = 0, · · · , N,
u0
n − (1 − ρ)uln − ρul+1

n = ψ(xn), n = 0, · · · ,M,

(12)

which is the second order of ADS for the approximate solution of the nonlocal
BVP (6). For computational reasons it is convenient to rewrite this system in the
matrix form

Anun+2 +Bnun+1 + Cnun +Dnun−1 +Enun−2 = Iθn, n = 2, · · · ,M − 2,
−3u0 + 4u1 − u2 =

−→
0 , 10u0 − 15u1 + 6u2 − u3 =

−→
0 , uM =

−→
0 ,

(13)
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where θn is a column vector, An, Bn, Cn, Dn, En are (N + 1)× (N + 1) square
matrices, R is N ×N identity matrix,

An =


0 . . . 0 0

enR

0
...
0

 , Bn =


0 . . . 0 0

ynR

0
...
0

 ,

Dn =


0 . . . 0 0

znR

0
...
0

 , En =


0 . . . 0 0

wnR

0
...
0

 ,

Cn =



1 0 0 · · · −(1 − ρ) ρ · · · 0 0 0
rn d 0 · · · 0 0 · · · 0 0 0
0 rn d · · · 0 0 · · · 0 0 0
...

...
... · · · · · · · · · · · ·

...
...

...
0 0 0 · · · 0 0 · · · rn d 0
0 0 0 · · · 0 0 · · · 0 rn d


, θn =


θ0
n
...
θNn

 ,

en = τq0
4h3 +

τq1
2h4 ,

yn = q2
2h + 1

h2 q3 − τq0
2h3 − 2τq1

h4 ,

rn = 1 + 1
τ + τ

2 − 2
h2 q3 +

3τq1
h4 ,

zn = − q2
2h + 1

h2 q3 +
τq0
h3 − 2τq1

h4 ,

wn = − τq0
4h3 +

τq1
2h4 , n = 2, · · · ,M − 2.

We search the solution of linear system equation (13) in the form

un = αn+1un+1 + βn+1un+2 + γn+1, n =M − 2, · · · , 0,

where

γ0 = γ1 =
−→
0 , α0 = 4

3R, β0 = −1
3R, α1 = 8

5R, β1 = −3
5R,

and αn, βn, γn are defined by recurrent formulas

Fn = (Cn +Dnαn−1 +Enβn−2 +Enαn−2αn−1) , n = 2, · · · ,M − 1,
αn = −F−1

n (Bn +Dnβn−1 +Enαn−2βn−1) , βn = −F−1
n An,

γn = −F−1
n (Rφn −Dnγn−1 − Enαn−2γn−1 − Enγn−2) .
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For uM and uM−1, we have formulas

uM =
−→
0 , uM−1 = (Q1 +Q2)

−1 (Q3 +Q4) ,

Q1 = BM−2 + CM−2αM−1 +DM−2 (αM−2αM−1 + βM−2αM−1) ,

Q2 = EM−2 (αM−3 (αM−2αM−1 + βM−2) + βM−3) ,

Q3 = IθM−2 − CM−2γM−1 −DM−2 (αM−2γM−1 + γM−2) ,

Q4 = −EM−2 (αM−3 (αM−2γM−1 + γM−2) + βM−3γM−1 + γM−3) .

Numerical illustration is carried out by using MATLAB program. Solutions of
DSs are computed for different values of (N,M). vkn and ukn correspond to the
corresponding numerical values of v(t, x) and u(t, x) at (t, x) = (tk, xn) and pn
represents the numerical value of p(x) at point x = xn. The errors are computed
by

EvNM = max
0≤k≤N

(
M−1∑
n=1

∣∣∣v(tk, xn)− vkn

∣∣∣2 h)
1
2

,

EuNM = max
0≤k≤N

(
M−1∑
n=1

∣∣∣u(tk, xn)− ukn

∣∣∣2 h)
1
2

,

EpM =

(
M−1∑
n=1

|p(xn)− pn|2 h

) 1
2

.

Table 1. Errors in the numerical solutions of the first order of ADS for different
values of (N,M).

N =M 20 40 80 160

EvNM 0.20745 0.09636 0.04654 0.02288

EpM 0.07210 0.03214 0.01518 0.00737

EvNM 0.14042 0.06396 0.03061 0.01498

Tables 1 and 2 illustrate the errors between the exact and approximate solutions
of DSs for various values of N and M , respectively. It can be seen from output
results that the second order of ADS is more accurate than the first order of ADS.
The error analysis shown in Tables 1 and 2 indicate that both DSs have correct
convergence rates.
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Table 2. Errors in the numerical solutions of the second order of ADS for different
values of (N,M).

N =M 20 40 80 160

EvNM 0.01902 0.00423 0.00091 0.00021

EpM 0.09052 0.02323 0.00678 0.00181

EvNM 0.09078 0.02181 0.00417 0.00095

4 Conclusion

In this work, SIP for a multi-dimensional parabolic partial differential equation
with multi-point nonlocal and mixed boundary conditions is studied. Stability
estimates for solutions of inverse problem and its approximations are established.
Numerical illustration is given for the simple test problem.
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