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Abstract. In the present paper, the spacewise dependent source identification problem

(SIP) for the elliptic-telegraph differential equation with involution and Robin condition

is investigated. The theorem on stability estimates for the solution of this space-wise

dependent SIP is established.
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1 Introduction

It is known that the telegraph equation is important for modeling several relevant

problems such as signal analysis [1], wave propagation [2], vibrational systems

[3], random walk theory [4], mechanical systems [5] and etc. In paper [6] studied

the development, analysis, and implementation of stable methods for the numeri-

cal solutions of second order hyperbolic equations.

Local and nonlocal problems for the elliptic-telegraph differential and differ-

ence equations have been studied extensively by many researches (see [7–10] and

the references therein).

In the papers [7, 8], the stability of the local and nonlocal problems for the

elliptic-telegraph differential equations were investigated. The first and the second

order of accuracy difference schemes approximately solving these problems were

presented. The stability estimates for the solution of these difference schemes

were established. Numerical results for the first and the second order of accuracy

difference schemes were given. In the paper [9], the equation of mixed elliptic-

hyperbolic type in rectangular area with the conditions of periodicity and the non-
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local problem of A. A. Desin was studied. Theorems of convergence of the con-

structed series in the class of regular solutions and the stability of the solution

were proved. In the paper [10], the existence of traveling wave solutions for a

hyperbolic-elliptic system of partial differential equations was established. The

geometric theory of singular perturbations was employed.

The spacewise dependent SIPs for the elliptic-telegraph differential equations

have been studied by many authors (see [11–14] and the references given therein).

In the paper [11], the inverse problem for an equation of elliptic-hyperbolic type

with a nonlocal boundary condition was studied. Theorems of the uniqueness cri-

terion and the stability of solutions with respect to the boundary value problem

were proved.

In the paper [12], the boundary value problem for the differential equation with

parameter in a Hilbert space with self-adjoint definite operator was investigated.

The well-posedness of this problem was established. The stability inequalities for

the solution of spacewise dependent SIPs for elliptic-hyperbolic equations were

given.

The spacewise SIP for the elliptic-telegraph differential equation in Hilbert

spaces with the self-adjoint positive definite operator was investigated in the pa-

per [13]. The main theorem on the stability of the spacewise dependent SIP for

the elliptic-telegraph differential equation was proved. In applications, theorems

on the stability of three spacewise SIPs for one dimensional with nonlocal con-

ditions and multidimensional elliptic-telegraph differential equations were estab-

lished. Finally, in the paper [14], the first order of accuracy absolute stable dif-

ference scheme for the approximate solution of the spacewise dependent SIP for

the elliptic-telegraph equation in Hilbert spaces with the self-adjoint positive def-

inite operator was presented. The main theorem on the stability of the differ-

ence scheme was established. In applications, theorems on the stability of differ-

ence schemes for two types of the spacewise SIPs for multidimensional elliptic-

telegraph partial differential equations were proved. Numerical analysis was pro-

vided.

Our goal in this paper is to investigate the stability of the spacewise depen-

dent SIP for the elliptic-telegraph differential equation (ETDE) with involution

and Robin condition
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utt(t, x) + αut(t, x)− (a(x)ux(t, x))x
+β (a(−x)ux (t,−x))x + σu(t, x)

= b (− (a(x)ux(−t, x))x + β (a(−x)ux (−t,−x))x + σu(−t, x))

+p(x) + f(t, x), t ∈ (0, T ) ,−l < x < l,

−utt(t, x)− (a(x)ux(t, x))x + β (a(−x)ux (t,−x))x + σu(t, x)

= b (− (a(x)ux(−t, x))x + β (a(−x)ux (−t,−x))x + σu(−t, x))

+p(x) + g(t, x), − T < t < 0,−l < x < l,

u(0, x) = ξ(x), ut(0
+, x) = ut(0

−, x),

u(−T, x) = ϕ(x), u(T, x) = ψ(x),−l ≤ x ≤ l,

ϕ (−l) = γϕx (−l) ,−ϕ (l) = ηϕx (l) ,

ψ (−l) = γψx (−l) ,−ψ (l) = ηψx (l) ,

u(t,−l) = γux(t,−l),−u(t, l) = ηux (t, l) , t ∈ [−T, T ]

(1)

for the elliptic-telegraph partial differential equation. Under compatibility condi-

tions problem (1) has a unique solution (u(t, x), p(x)) for the smooth functions

a ≥ a(x) = a (−x) ≥ δ > 0 and σ > 0 is a sufficiently large number,

ϕ(x), ξ(x), ψ(x) (x ∈ [−l, l]), f(t, x) (t ∈ (0, T )) , g(t, x)(t ∈ (−T, 0) , x ∈
(−l, l) , and α, γ, β, η ≥ 0. The theorem on stability estimates for the solution

of this spacewise dependent SIP (1) is established.

2 The theorem on stability of the spacewise dependent SIP (1)

We can reduce the spacewise dependent SIP (1) to the spacewise dependent SIP

for the ETDE































d2u(t)
dt2 + α

du(t)
dt +Au(t) = p+ f(t), 0 < t < T,

−d2u(t)
dt2 + Au(t) = p+ g(t),−T < t < 0,

u(0) = ξ, ut(0
+) = ut(0

−), u(−T ) = ϕ, u(T ) = ψ

(2)

in a Hilbert space H = L2[−l, l] with a self-adjoint positive definite operator

A = Ax defined by formula (see [15],[16],[17])

Axu(x) = −(a(x)ux)x + β (a(−x)ux (t,−x))x + σu(t, x) (3)
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with domain

D(Ax) = {u(x) : u(x), ux(x), (a(x)ux)x ∈ L2[−l, l],

u(−l) = γux (−l) ,−u (l) = ηux (l)} .

Applying the symmetry property of the space operatorAx with the domain D(Ax)
⊂ W 2

2 [−l, l] , we can obtain the following theorem on stability of problem (1).

Here and in the rest of this paper, C(H) = C([−T, T ],H) stands for the Banach

space of continuous H-valued functions u(t) defined on [−T, T ], equipped with

the norm

||u||C(H) = max
t∈[−T,T ]

||u(t)||H . (4)

Theorem 2.1. Suppose that ϕ,ψ, ξ ∈ W 2
2 [−l, l], and α ≥ 4,

(

α
2
+ 1

)2
≥ δ ≥

(

α
2

)2
+ 1. Let f(t, x) be continuously differentiable in t on [0, T ] × [−l, l] and

g(t, x) be continuously differentiable functions in t on [−T, 0] × [−l, l]. Then the

solutions of the spacewise dependent SIP (2) has a unique solution u ∈ C (L2 [−l, l])
= C ([−T, T ] , L2 [−l, l]) , p ∈ C [−l, l] and for the solution of the time dependent

SIP (2) the following stability estimates hold

‖u‖C([−T,T ],L2[−l,l]) +
∥

∥(Ax)−1p
∥

∥

L2[−l,l]

≤M1(α, δ)
[

‖ϕ‖L2[−l,l] + ‖ψ‖L2[−l,l] + ‖ξ‖L2[−l,l]

+ ‖f‖C([0,T ],L2[−l,l]) + ‖g‖C([−T,0],L2[−l,l])

]

, (5)

‖u‖C(2)([−T,T ],L2[−l,l]) + ‖u‖C([−T,T ],W 2
2
[−l,l]) + ‖p‖L2[−l,l]

≤M2(α, δ)
[

‖ϕ‖W 2
2
[−l,l] + ‖ψ‖W 2

2
[−l,l]

+ ‖ξ‖W 2
2
[−l,l] + ‖f‖C(1)([0,T ],L2[−l,l]) + ‖g‖C(1)([−T,0],L2[−l,l])

]

, (6)

where M1(α, δ) and M2(α, δ) do not depend on ϕ(x), ψ(x), ξ(x), f(t, x) and

g(t, x). Here, the Sobolev space W 2
2 [−l, l] is defined as the set of all functions

u(x) defined on [−l, l] such that u(x) and the second order derivative function

u′′(x) are all locally integrable in L2[−l, l], equipped the norm

‖u‖W 2
2
[−l,l] =





l
∫

−l

|u(x)|2 dx





1
2

+





l
∫

−l

∣

∣u′′(x)
∣

∣

2
dx





1
2

.
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Proof. The proof of Theorem 2.1 is based on the self-adjointness and positivity

operator A = Ax defined by the formula (3) and on the the following abstract

stability result.

Theorem 2.2 ([13]). Suppose that ϕ,ψ, ξ ∈ D(A), and α ≥ 4,
(

α
2
+ 1

)2
≥ δ ≥

(

α
2

)2
+ 1. Let f(t) be continuously differentiable on [0, T ] and g(t) be continu-

ously differentiable on [−T, 0] functions. Then there is a unique solution of the

problem (2) and the stability inequalities

max
−T≤t≤T

‖u(t)‖H +
∥

∥A−1p
∥

∥

H
≤M(α, δ) [‖ϕ‖H + ‖ψ‖H + ‖ξ‖H

+ max
−T≤t≤0

∥

∥

∥
A−1/2g(t)

∥

∥

∥

H
+ max

0≤t≤T

∥

∥

∥
A−1/2f(t)

∥

∥

∥

]

H

,

max
−T≤t≤T

∥

∥

∥

∥

d2u(t)

dt2

∥

∥

∥

∥

H

+ max
−T≤t≤T

‖Au(t)‖H + ‖p‖H

≤M(α, δ) [‖Aϕ‖H + ‖Aψ‖H + ‖Aξ‖H + ‖g(0)‖H

+ max
−T≤t≤0

∥

∥g′(t)
∥

∥

H
+ ‖f(0)‖H + max

0≤t≤T

∥

∥f ′(t)
∥

∥

H

]

hold, where M(α, δ) does not depend on f(t), t ∈ [0, T ], g(t), t ∈ [−T, 0] and

ϕ,ψ, ξ.

3 Conclusion

In the present paper, the spacewise dependent SIP for the ETDE with involution

and Robin condition is studied. The theorem on stability estimates for the solution

of this spacewise dependent SIP is established. Moreover, applying the result

of the monographs [18, 19], the two-step difference schemes for the numerical

solution of the spacewise dependent SIPs for the ETDE can be presented. Of

course, the stability estimates for the solution of these difference schemes can be

investigated.
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