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On the Schrödinger-parabolic equation with
multipoint nonlocal boundary condition
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Abstract. The nonlocal boundary value problem for a Schrödinger-parabolic equation
with multipoint nonlocal boundary conditions is examined. Stability estimates for the so-
lution of this problem are established. Additionally, these stability estimates are applied to
a mixed-type boundary value problem for the Schrödinger-parabolic equation with multi-
point nonlocal boundary conditions.
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1 Introduction

Specific problems of modern physics and technology can be effectively illustrated
in terms of nonlocal boundary value problems for partial differential equations
with nonlocal boundary conditions. These conditions occur when the data on the
boundary cannot be measured directly. Methods of solutions of nonlocal boundary
value problems for partial differential equations and partial differential equations
of mixed types have been studied extensively by many researchers (see [1–10] and
references therein).

In the papers [11, 12], a two point nonlocal boundary value problem
du(t)
dt +Au(t) = f(t), 0 ≤ t ≤ 1,

idu(t)dt +Au(t) = g(t), −1 ≤ t ≤ 0,
u(−1) = u(1) + φ

for a Schrödinger-parabolic equation in a Hilbert space H with a self-adjoint posi-
tive definite operator A was studied. The stability of this problem was established.
The first and second order accuracy difference schemes for the approximate so-
lutions of this nonlocal boundary value problem were presented. The stability
of these difference schemes was established. In applications, stability inequali-
ties for the solutions of difference schemes for Schrödinger-parabolic equations
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were obtained. The Matlab implementation of these difference schemes for the
Schrödinger-parabolic equation was presented. Additionally, extensive numerical
experiments were conducted to verify the theoretical results. These experiments
demonstrated the effectiveness and reliability of the proposed schemes in practical
scenarios. The findings contribute significantly to the existing literature, providing
a solid foundation for future research in this area.

In the present paper, the nonlocal boundary value problem for the following
Schrödinger-parabolic equation with the multipoint nonlocal boundary condition

du(t)
dt +Au(t) = f(t), 0 ≤ t ≤ 1,

idu(t)dt +Au(t) = g(t), −1 ≤ t ≤ 0,

u(−1) =
N∑
j=1

αju (µj) + φ, 0 < µj ≤ 1

(1)

in a Hilbert space H with a self-adjoint positive definite operator A is considered.
A function u(t) is called a solution of the problem (1) if the following conditions

are satisfied:

• u(t) is continuously differentiable on the segment [−1, 1], the derivative at
the endpoints of the segment are understood as the appropriate unilateral
derivatives;

• the element u(t) belongs to D(A) for all t ∈ [−1, 1], and the function Au(t)
is continuous on the segment [−1, 1];

• u(t) satisfies the equations and multipoint nonlocal boundary condition (1).

The main purpose of this work is to obtain the stability of a nonlocal boundary
value problem (1) for a Schrödinger-parabolic equation with multipoint nonlo-
cal boundary conditions. We establish rigorously the conditions under which the
stability of the solution can be guaranteed. The work involves a comprehensive
mathematical analysis to derive and prove the stability criteria, ensuring that the
solutions remain stable under the specified nonlocal boundary conditions.

2 Stability Analysis

First of all, let us give two auxiliary lemmas that will be needed below.

Lemma 2.1. Let H be a Hilbert space and A be a self-adjoint positive definite
operator with A ≥ δI , where δ > 0. The following estimates hold:∥∥e−tA

∥∥
H→H

≤ 1, t ≥ 0, (2)∥∥e±itA
∥∥
H→H

≤ 1. (3)
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Lemma 2.2. Assume that
N∑
j=1

|αj | e−µjδ < 1. Then, the operator

I −
N∑
j=1

αje
iAe−µjA

has an inverse

T =

I −
N∑
j=1

αje
iAe−µjA

−1

and the estimate holds:

∥T∥H→H ≤ 1

1 −
N∑
j=1

|αj | e−µjδ

. (4)

Proof. The proof of the estimate (4) is based on the inequality∥∥∥∥∥∥
N∑
j=1

αje
−(µj+i)A

∥∥∥∥∥∥
H→H

≤
N∑
j=1

|αj |
∣∣∣e−µjδ

∣∣∣ ∣∣∣e−iδ
∣∣∣ ≤ N∑

j=1

|αj | e−µjδ < 1.

Then,

∥T∥H→H =

∥∥∥∥∥∥∥
I −

N∑
j=1

αje
iAe−µjA

−1
∥∥∥∥∥∥∥
H→H

≤ 1

1 −
N∑
j=1

|αj | e−µjδ

.

That is, the estimate (4) has been proven.

We have the following main theorem on the stability of the problem (1).

Theorem 2.3. Assume that all assumptions of Lemmas 2.1 and 2.2 are satisfied.
Suppose that φ ∈ D(A). Let f(t) and g(t) be continuously differentiable functions
on intervals [0, 1] and [−1, 0], respectively. Then, there is a unique solution of the
problem (1) and the following stability inequalities

max
−1≤t≤1

∥u (t)∥H ≤ M1

[
∥φ∥H + max

−1≤t≤0
∥g (t)∥H + max

0≤t≤1
∥f (t)∥H

]
, (5)

max
−1≤t≤1

∥Au (t)∥H ≤ M1

[
∥Aφ∥H + ∥g (0)∥H + max

−1≤t≤0

∥∥g′ (t)∥∥
H
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+ ∥f (0)∥H + max
0≤t≤1

∥∥f ′ (t)
∥∥
H

]
(6)

hold, where M1 is independent of f(t), t ∈ [0, 1], g(t), t ∈ [−1, 0] and φ.

Proof. First, we will derive a formula for solving the problem (1). It is known that
the initial value problems

du(t)

dt
+Au(t) = f(t), 0 ≤ t ≤ 1, u(0) = u0 (7)

i
du(t)

dt
+Au(t) = g(t), − 1 ≤ t ≤ 0, u(−1) = u−1 (8)

have unique solutions

u(t) = e−tAu(0) +

t∫
0

e−(t−s)Af(s)ds, 0 ≤ t ≤ 1, (9)

u(t) = ei(t+1)Au−1 − i

t∫
−1

ei(t−s)Ag(s)ds, − 1 ≤ t ≤ 0, (10)

respectively. Using the formula (10) we have

u(0) = eiAu−1 − i

0∫
−1

e−isAg(s)ds, (11)

with the help of which we obtain from (9)

u(t) = e−tA

eiAu−1 − i

0∫
−1

e−isAg(s)ds

+

t∫
0

e−(t−s)Af(s)ds, 0 ≤ t ≤ 1. (12)

Using the multipoint nonlocal boundary condition

u(−1) =
N∑
j=1

αju (µj) + φ,

we get the following operator equationI −
N∑
j=1

αje
iAe−µjA

u−1
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=
N∑
j=1

αj

−ie−µjA

0∫
−1

e−isAg(s)ds+

µj∫
0

e−(µj−s)Af(s)ds

+ φ. (13)

Thus, from the operator equation (13), we obtain

u−1 = T

 N∑
j=1

αj

−ie−µjA

0∫
−1

e−isAg(s)ds+

µj∫
0

e−(µj−s)Af(s)ds

+ φ

 .

    
Therefore, for the solution of problem (1), the formulas (10), (12), and (14) are 
obtained.

Now, the proof of estimates (5) and (6) will be obtained. These inequalities are 
the stability estimates of the solution and the first derivative of the solution of the 
problem (1), respectively.

First, the inequality (5) will be proved. Using the formula (14) and estimates 
(2) and (3),

∥u−1∥H ≤ ∥T∥H→H

 N∑
j=1

|αj |
∥∥e−µjA

∥∥
H→H

0∫
−1

∥∥e−iAs
∥∥
H→H

∥g(s)∥H ds

+
N∑
j=1

|αj |
µj∫

0

∥∥∥e−(µj−s)A
∥∥∥
H→H

∥f(s)∥H ds+ ∥φ∥H


≤ M1

 0∫
−1

∥g(s)∥H ds+

1∫
0

∥f(s)∥H ds+ ∥φ∥H

 .

Thus, we have

∥u−1∥H ≤ M1

[
∥φ∥H + max

−1≤t≤0
∥g(t)∥H + max

0≤t≤1
∥f(t)∥H

]
. (15)

Using the formula (12), estimates (2), (3), (15) and triangle inequality, we get

∥u(t)∥H ≤
∥∥e−tA

∥∥
H→H

(∥∥eiA∥∥
H→H

∥u−1∥H

+

0∫
−1

∥∥e−isA
∥∥
H→H

∥g(s)∥H ds+

t∫
0

∥∥∥e−(t−s)A
∥∥∥
H→H

∥f(s)∥H ds

)

(14)
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≤ ∥u−1∥H +

0∫
−1

∥g(s)∥H ds+

1∫
0

∥f(s)∥H ds, 0 ≤ t ≤ 1.

Thus,

∥u(t)∥H ≤ M1

[
∥φ∥H + max

−1≤t≤0
∥g(t)∥H + max

0≤t≤1
∥f(t)∥H

]
, 0 ≤ t ≤ 1. (16)

Using the formula (10), estimates (2), (3), (15) and triangle inequality, we obtain

∥u(t)∥H ≤
∥∥∥ei(t+1)A

∥∥∥
H→H

∥u−1∥H +

t∫
−1

∥∥∥ei(t−s)A
∥∥∥
H→H

∥g(s)∥H ds

≤ ∥u−1∥H +

0∫
−1

∥g(s)∥H ds, − 1 ≤ t ≤ 0.

Thus, the following estimate

∥u(t)∥H ≤ M1

[
∥φ∥H + max

−1≤t≤0
∥g(t)∥H + max

0≤t≤1
∥f(t)∥H

]
, − 1 ≤ t ≤ 0

       
is obtained. Therefore, using the inequalities (16) and (17), the inequality (5) is 
proven.

Secondly, the inequality (6) will be proven. Acting the operator A to the for-
mulas (14), (10), (12) and using integration by parts and estimates (2), (3), we
get

∥Au(−1)∥H ≤ M1

[
∥Aφ∥H + ∥g(0)∥H + max

−1≤t≤0

∥∥g′(t)∥∥
H

+ ∥f(0)∥H + max
0≤t≤1

∥∥f ′(t)
∥∥
H

]
, (18)

∥Au(t)∥H ≤ M2

[
∥Au(−1)∥H + ∥f(0)∥H + max

0≤t≤1

∥∥f ′(t)
∥∥
H

+ ∥g(0)∥H + max
−1≤t≤0

∥∥g′(t)∥∥
H

]
≤ M2

[
∥Aφ∥H + ∥g(0)∥H + max

−1≤t≤0

∥∥g′(t)∥∥
H

+ ∥f(0)∥H + max
0≤t≤1

∥∥f ′(t)
∥∥
H

]
, 0 ≤ t ≤ 1, (19)

(17)
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∥Au(t)∥H ≤ ∥Au(−1)∥H + ∥g(0)∥H + max
−1≤t≤0

∥∥g′(t)∥∥
H

≤ M3

[
∥Aφ∥H + ∥g(0)∥H + max

−1≤t≤0

∥∥g′(t)∥∥
H

+ ∥f(0)∥H + max
0≤t≤1

∥∥f ′(t)
∥∥
H

]
, − 1 ≤ t ≤ 0. (20)

From estimates (18), (19), (20) it follows the inequality (6). Thus, the proof of
Theorem 2.3 is completed.

3 An Application

Now, we consider the application of Theorem 2.3. In [−1, 1]×Ω, we consider the
nonlocal boundary value problem

vt −
m∑
r=1

(ar(x)vxr)xr
= f(t, x), 0 ≤ t ≤ 1, x = (x1, · · · , xm) ∈ Ω,

ivt −
m∑
r=1

(ar(x)vxr)xr
= g(t, x), − 1 ≤ t ≤ 0, x = (x1, · · · , xm) ∈ Ω,

v(−1, x) =
N∑
j=1

αjv (µj , x) + φ(x), x ∈ Ω, 0 < µj ≤ 1,

v(t, x) = 0, x ∈ S, − 1 ≤ t ≤ 1

for multi-dimensional Schrödinger-parabolic equation. Here, Ω is the unit open
cube in the m-dimensional Euclidean space Rm{

x : x = (x1, · · · , xm) ∈ Rm, 0 < xk < 1, 1 ≤ k ≤ m
}

with the boundary S and Ω = Ω ∪ S.
We introduce the Hilbert space L2(Ω) of all square integrable functions defined

on Ω, equipped with the norm

∥f∥L2(Ω) =


∫

· · ·
∫

x∈Ω

|f(x)|2dx1 · · · dxm


1/2

and Hilbert spaces W 1
2

(
Ω
)

and W 2
2

(
Ω
)

defined on Ω, equipped with norms

∥φ∥W 1
2 (Ω) = ∥φ∥L2(Ω) +


∫

· · ·
∫

x∈Ω

m∑
r=1

|φxr |2dx1 · · · dxm


1/2

,

(21)
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∥φ∥W 2
2 (Ω) = ∥φ∥L2(Ω) +


∫

· · ·
∫

x∈Ω

m∑
r=1

|φxrxr |2dx1 · · · dxm


1/2

,

respectively. The problem (21) has a unique smooth solution v(t, x) for smooth
functions ar(x), x ∈ Ω, φ(x), x ∈ Ω, f(t, x), (t, x) ∈ [0, 1]× Ω, g(t, x), (t, x) ∈
[−1, 0]× Ω. Here, ar(x) ≥ a > 0, x ∈ Ω. This allows us to reduce problem (21)
to boundary value problem (1) in Hilbert space H = L2(Ω) with a self-adjoint
positive definite operator Ax defined by formula

Axv (x) = −
m∑
r=1

(ar(x)vxr)xr
(22)

with domain

D (Ax) =
{
v(x) : v(x), (ar(x)vxr)xr

∈ L2(Ω), 1 ≤ r ≤ m, v(x) = 0, x ∈ S
}
.

Theorem 3.1. Assume that
N∑
j=1

|αj | e−µjδ ≤ 1. Then, for the solution of problem

(21), the following stability inequalities hold:

max
−1≤t≤1

∥v(t, ·)∥L2(Ω) ≤ M2

[
∥φ∥L2(Ω) + max

−1≤t≤0
∥g(t, ·)∥L2(Ω)

+ max
0≤t≤1

∥f(t, ·)∥L2(Ω)

]
,

max
−1≤t≤1

∥v(t, ·)∥W 2
2 (Ω) ≤ M2

[
∥φ∥W 1

2 (Ω) + ∥g(0, ·)∥L2(Ω)

+ max
−1≤t≤0

∥gt(t, ·)∥L2(Ω) + ∥f(0, ·)∥L2(Ω) + max
0≤t≤1

∥ft(t, ·)∥L2(Ω)

]
,

where M2 is independent of f(t, x), (t, x) ∈ [0, 1]×Ω, g(t, x), (t, x) ∈ [−1, 0]×Ω

and φ(x), x ∈ Ω.

The proof of Theorem 3.1 is based on the abstract Theorem 2.3, symmetry
properties of the operator Ax defined by formula (22) and the following theorem
on the coercivity inequality for the solution of the elliptic differential problem in
L2
(
Ω
)
.

Theorem 3.2. For the solutions of the elliptic differential problem

Axv(x) = ω(x), x ∈ Ω, v(x) = 0, x ∈ S,
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the following coercivity inequality holds:

m∑
r=1

∥vxrxr∥L2(Ω) ≤ M3 ∥ω∥L2(Ω) ,

where M3 is independent of ω [13].

4 Conclusion

This study is focused on determining the stability of a nonlocal boundary value
problem for a Schrödinger-parabolic equation with multipoint nonlocal boundary
condition. A comprehensive stability theorem was developed, clearly defining the
condition required to ensure the stability of the solutions. Through meticulous
mathematical analysis, we derived and validated the stability criteria, confirming
that the solutions remain stable under the multipoint nonlocal boundary condition.
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