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The lower bound for number of hexagons in strongly
regular graphs with parameters λ = 1 and µ = 2
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Abstract. The existence of srg(99, 14, 1, 2) has been a question of interest for several
decades to the moment. In this paper, we consider the structural properties in general for
the family of strongly regular graphs with parameters λ = 1 and µ = 2. In particular,
we establish the lower bound for the number of hexagons, and by doing that, we show
the connection between the existence of the aforementioned graph and the number of its
hexagons.
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1 Introduction

The existence of some graphs, most notably those that have a very fine struc-
ture called strong regularity, is still not known [1, 2]. In his renowned set of five
problems, John Conway [3] stated a problem regarding the search for one of such
graphs. It states the following.
Problem. Is there a 99-vertex graph such that the following conditions are satis-
fied: I. Any edge belongs to a unique triangle (C3); II. Any non-edge belongs to a
unique quadrilateral (C4)?

The problem is a rephrase of the search for a strongly-regular graph with pa-
rameters n = 99, k = 14, λ = 1, µ = 2, in short, srg(99, 14, 1, 2). Makhnev [4]
has answered this question partially. In this paper, we study the structure of such
graphs in general and find the lower bound for a number of hexagons; in doing so,
we show that if the lower bound for hexagons is achieved, then the graph doesn’t
exist. Supporting this hypothesis is the fact that both of the known graphs of the
same class, namely srg(9, 4, 1, 2) (i.e., Paley 9) and srg(243, 22, 1, 2), obey it and
take the lowest possible value for the number of hexagons.

Moreover, it does look like if the other two graphs in the same class with pa-
rameters k = 112 and k = 994 should exist and have to be built of Paley 9, i.e.,
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srg(9, 4, 1, 2), as building blocks. But without strict proof, we can only speculate
about it.

2 Preliminary Study

For simplicity, a graph satisfying conditions I and II without regard to its order n,
henceforth be denoted G. First of all, let us show that the graph G is indeed an
srg. Obviously, G is simple due to Condition I, and with at least two vertices, is
connected due to Condition II. Also, conditions guarantee that if G is regular, then
it is strongly regular. Thus, we just need to prove the regularity.

Proposition 2.1. Graph G is regular, thus it is strongly regular.

Proof. We can safely assume that G has at least two vertices or else, it does not
have any edges or non-edges. Choose vertex a ∈ V (G), G is connected so there
exists b ∈ G s.t. ab ∈ E(G). Condition I guarantees the existence of the unique
c - the third vertex of the triangle with vertices a, b, c. Denote N(v) - the set of
vertices adjacent to a given vertex v, its neighborhood excluding the vertex itself.
If N(a) \ {a, c} = N(b) \ {b, c} = ∅ then G = K3 thus 2-regular and by default
is an srg(3, 2, 1, 2). Otherwise choose v ∈ N(a) \ {b, c}. vb /∈ E(G) and vc /∈
E(G) due to Condition I. As vb is a non-edge, Condition II identifies w ∈ N(b) s.t.
vw ∈ E(G). v is not adjacent to any other vertices from N(b) \ {a, c}. Similarly,
w cannot be adjacent to any other vertices from N(a) \ {b, c}. Bijection has been
established, which means the vertex degrees are equal, da = db, i.e. a and b are
vertices of equal valencies. G is connected, thus for any x ∈ V (G) there is a path
a, y, ..., x, with da = dy = ... = dx, so da = dx. G is regular.

Figure 1. Drawings of Paley 9 graph P9 ≡ srg(9, 4, 1, 2).

As a result of the proposition, G is strongly regular, srg(n, k, λ, µ), where n is
the number of vertices, k is valency, that is necessarily even due to Condition I,
λ = 1 (also Condition I), µ = 2 (Condition II). Thus, Conditions I and II define
the class of strongly regular graphs with parameters λ = 1 and µ = 2. The order
of the graph n and its valency k are also related with a simple formula.
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Proposition 2.2. For a k-regular graph G satisfying Conditions I and II,

n = |V (G)| = k2 + 2
2

.

Proof. We will use the standard technique in Graph Theory called Double Count-
ing. Let a ∈ V (G), N(a)- neighborhood of a, and W (a) = V (G) \N(a) \ {a},
the set of vertices of G different from a and N(a). So we have: n = |V (G)|,
|N(a)| = k, |W (a)| = n − k − 1. Consider all the edges between N(a) and
W (a). Then,

k(k − 2) = 2(n− k − 1).

The left-hand side is due to regularity and Condition I; the right-hand side- is due
to Condition II. Solving the equation, we get n = k2+2

2 .

Denote p3, p4, p5 and p6 the number of, respectively, triangles (induced sub-
graphs isomorphic to cycle C3), quadrilaterals (C4), pentagons (C5) and hexagons
(C6). The next few propositions are about the number of such polygons (cycles)
in G. The quantities p3 and p4 can be found directly.

Proposition 2.3. Graph G has exactly 1
6nk triangles and 1

8nk(k− 2) quadrilater-
als.

Proof. Straight-forward counting using Condition I and Handshaking Lemma gives

p3 =
nk
2
3

=
nk

6
.

To count the number of quadrilateral we will use the fact that each node of G has
n − k − 1 nodes (vertices) non-adjacent with it. Condition II guarantees exactly
one quadrilateral for each of them. Counting over all the vertices and dividing to
four, because we count each quadrilateral exactly four times, we obtain:

p4 =
n(n− k − 1)

4
=

1
4
n(

k2 + 2
2

− k − 1) =
1
8
nk(k − 2).

Notice that we have used Proposition 2.2 here.

To find p5 we need to work a bit harder.

Theorem 2.4. Graph G has exactly 1
5nk(k − 2)(k − 4) pentagons.
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Proof. Any closed walk of length 5 in the graph can be coded into a string of six
numbers d1d2d3d4d5d1, which we denote here the distance between a vertex in
a walk to its starting, and thus finishing, vertex. Pentagons will be coded by the
string 012210. Using the geometry of the graph, the first vertex can be chosen n
ways, the second - k ways, the next three, respectively k − 2, k − 2, 2 ways, and
the last vertex, being already predetermined, - one way. In total, there are exactly
n · k · (k− 2) · (k− 2) · 2 · 1 = 2nk(k− 2)2 of such walks. Except for pentagons,
two more possible configurations, T1 and T2, satisfy the same code (Figure 2).

Figure 2. Walks coded by string 012210 and their induced subgraphs.

Thus, denoting t1 the number of subgraphs of type T1, and t2 - of type T2, we
have

2nk(k − 2)2 = 10 · p5 + 6t1 + 2t2,

where t1 = 4 · p4; and t2 = 3(k− 2) · p3. The coefficients in front of t1 and t2 are
coming from the symmetries of the walks.

So,

10 · p5 = 2nk(k − 2)2 − 6t1 − 2t2

= 2nk(k − 2)2 − 6 · 4 · 1
4
n(n− k − 1)− 2 · 3(k − 2)

nk

6

= 2nk(k − 2)2 − 6n(
k2 + 2

2
− k − 1)− nk(k − 2)

= 2nk(k − 2)2 − 3nk(k − 2)− nk(k − 2)

= 2nk(k − 2)(k − 4).

Notice that we have used Proposition 2.2 in calculations. The statement follows.

The next statement follows immediately.

Corollary 2.5. An edge of G belongs to exactly 2(k − 2)(k − 4) pentagons.
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Proof. On average, each edge belongs to p5/|E(G)| = 2(k−2)(k−4) pentagons,
where |E(G)| - number of edges in G. So we just need to prove that this is the
maximum number of pentagons possible for a given edge.

Given ab ∈ E(G), each of k − 2 vertices of a, out of a triangle based on ab, is
adjacent to exactly one vertex from the neighborhood of b and is not adjacent to
exactly k− 3. Remember Condition II. Now it gives us at most 2(k− 2)(k− 3)−
2(k−2) = 2(k−2)(k−4) pentagons, where subtraction is needed due to the two
existing routes to each choice of k − 2 vertices. The statement follows.

3 Main result

To find the number of hexagons, we will compare two quantities: the coefficient c6
of the characteristic polynomial of the adjacency matrix of G against the number
of all possible triples of edges in G, which is obviously

(|E(G)|
3

)
.

To begin with, we have to remind ourselves of some known facts from algebraic
graph theory. Given a graph G, with its adjacency matrix A = A(G) and char-
acteristic polynomial PG(x), the coefficients of its characteristic polynomial are
connected with the structure of the graph in the following manner:

ci = (−1)i
∑
|S|=i

detA(G[S]), (1)

where

PG(x) = det(λI −A) =
n∑
i=1

(x− λi) = c0x
n + c1x

n−1 + c2x
n−2...,

and A(G[S]) is an adjacency matrix of an induced subgraph on the set of vertices
S ([5, p. 454]). Here λi-s are the eigenvalues of A[G].

Instead of vertices, we can induce the subgraphs on the set of three edges, which
might not always give a subgraph of order six. The next proposition asserts those
cases.

Proposition 3.1. Denote e4 is the number of edge triples that are based on at most
four vertices of G, e5 is the number of edge triples that are based on exactly five
vertices of G. The following equalities hold:

e4 =
1
6
nk(4k2 − 9k + 3);

e5 =
1
8
nk(k − 2)(k3 + k2 − 8k + 2).



6 R. Reimbayev

Proof. Three edges can be contained by three vertices if they are mutually incident
and form a triangle in p3 ways. Three edges can all be incident to exactly one
vertex, and thus being contained by four vertices, - in n

(
k
3

)
ways. And finally,

three edges can be incident consequentially as in a path P4: choose the middle
edge arbitrarily from all possible edges; two adjacent ones - such that they do not
form a triangle, - altogether, in nk

2 ((k − 1)2 − 1) ways. Collecting,

e4 =
nk

6
+ n

(
k

3

)
+

nk

2
((k − 1)2 − 1) =

1
6
nk(4k2 − 9k + 3).

Notice that different triples of edges can give the same induced subgraph, but it
should not bother us at the moment as we are counting only distinct triples of
edges, not subgraphs.

To find e5, we have to realize that three edges can be incident to exactly five
vertices only if two edges are incident while the third edge is not incident to the
previous two. This fact means that among five vertices, we always have one unique
vertex with two edges incident to it. Choose that vertex, n ways; next, choose two
incidents to its edges out of k possible. Here we have to consider two possibilities:
when the pair of edges belong to a triangle, k

2 pairs, and when they do not,
(
k
2

)
− k

2
cases. For each possibility, we will choose the third edge out of all possible edges
not incident to the ones already chosen.

Thus,

e5 = n[
k

2
(
nk

2
− 3(k − 2)− 3) + (

(
k

2

)
− k

2
)(
nk

2
− (k − 2)− 2(k − 1)− 2)]

=
1
2
nk(k − 1)(

nk

2
− 3k + 2) +

nk

2
=

1
8
nk(k − 2)(k3 + k2 − 8k + 2).

Now we turn our attention to the case when three edges incident to six vertices.
It is the case when we have a perfect matching, or three-edge covers of the six
vertex subgraphs. We have to consider all possible subgraphs on six vertices of G.
They are given in the following two tables. Table 1 considers connected subgraphs,
and Table 2 - disconnected ones.
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Table 1: Connected subgraphs

num. 1. 2. 3. 4. 5. 6. 7.
Cvet. 51 68 70 72 79 83 84 85 86 87 88

det. 0 -4 0 -1 -1 -1 3 -1 0 -1 0
cov. 4 2 2 3 1 1 1 1 2 1 2

num. 8. 9. 10.
Cvet. 89 92 93 94 95 96 97 98 99 100 101

det. -4 -1 0 0 0 -1 -1 -1 0 -1 0
cov. 2 3 2 0 0 1 1 1 0 1 0

num. 11. 12.
Cvet. 102 103 104 105 106 107 108 109 110 111 112

det. -1 0 0 -1 -4 0 0 0 -1 0 -1
cov. 1 0 2 1 2 0 0 0 1 0 1

Table 2: Disconnected subgraphs

num. graph det. cov.

-1 1

-1 1

13. 0 2

-1 1

14. 4 0

In Table 1, num. - is the special enumeration of the graphs that do not vanish when
we add the bottom rows: det.+ cov.; Cvet. - the numeration of six-vertex graphs
due to Cvetcovic [10]; det. - is the determinant of the adjacency matrix of the
given graph; cov. - number of edge covers of the graph by exactly three edges.
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Here we have to use [10] in order to make sure that we do not miss any graph. The
paper gives a complete list of connected six-vertex graphs and allows us to refer
to the graphs without necessarily drawing them. The values for the determinants
have been found using the online Matrix Calculator [11]. We will use them in
summation for c6 from the formula (1). Five more disconnected graphs on six
vertices, that are not available from the list of Cvetcovic [10], are given in Table 2.

In short, adding two quantities, c6 and
(|E(G)|

3

)
would allow us to eliminate, as

it can be seen from the tables, most of the graphs and leave only twelve of them.
They are given in Figure 3 with the same numeration as in tables. Denote ni -
number of graphs isomorphic to the graph enumerated by i, 1 ≤ i ≤ 12, from the
Figure 3. Then,

c6 +

(
|E(G)|

3

)
= 4n1 − 2n2 + 2n3 + 2n4 + 4n5 + 2n6 + 2n7

− 2n8 + 2n9 + 2n10 + 2n11 − 2n12 + 2n13 + 4n14 + e4 + e5. (2)

Figure 3. The only induced subgraphs that have not been eliminated by summation
c6 +

(|E(G)|
3

)
. The enumeration is the same as in Table 1 and 2.

To proceed further, we need the next rather lengthy proposition. It will allow us
to tie up all the quantities on the right-hand side of (2).
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Proposition 3.2. The following equalities hold:

n2 =
1
2
nk(k − 2); (3)

n4 + n8 = nk(k − 2)(k − 4); (4)

6n1 + n4 =
1
2
nk(k − 2); (5)

3n1 + n3 =
1
4
nk(k − 2); (6)

3n1 + n4 + n9 =
1
4
nk(k − 2)(k − 3); (7)

n1 + n3 + n5 + n14 =
1
12

nk(
nk

6
− 1)− 1

8
nk(k − 2); (8)

3n1 + 2n4 + n6 + n7 + 2n9 + n10 + n11 + n13

=
1
8
nk(k − 2)(

nk

2
− 4k + 4). (9)

Proof. Take a quadrilateral from G. Complete on its two adjacent sides triangles.
We will get the unique graph of type 2 (Figure 3). So using Proposition 3:

n2 = 4p4 =
1
2
nk(k − 2).

Take a pentagon from G. Complete a triangle on one of its sides. We can get the
graph of type 4 or type 8 and no other one. Thus,

n4 + n8 = 5p5 = nk(k − 2)(k − 4).

Take a triangle in G. Choose a vertex adjacent to one of the three vertices of the
triangle, out of 3(k − 2) possible ones. Complete it uniquely the way we did it
in Figure 5a. We have two possible configurations: 4 and 1. If we get graph 1, it
should be counted six times as it can be obtained in six different ways.

6n1 + n4 = p3 · 3(k − 2) =
1
2
nk(k − 2).

Take again a quadrilateral from G. Similarly, complete two triangles but this time
on its opposite sides. We can get either graph 3 or 1. If we get graph 1, we have to
count it three times as it has three distinct quadrilaterals we could start with.

3n1 + n3 = 2p4 =
1
4
nk(k − 2).
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All three graphs:1, 4, and 9, consist of two quadrilaterals sharing an edge. Any
edge belongs to exactly k − 2 quadrilaterals, from which we can choose pairs of
quadrilaterals. Graph 1 again is counted three times as it has three pairs of such
quadrilaterals. So,

3n1 + n4 + n9 = |E(G)|
(
k − 2

2

)
=

1
4
nk(k − 2)(k − 3).

The four graphs, 1, 3, 5, and 14, all consist of exactly two triangles that do not
share a vertex. In order to find all such configurations, we simply need to subtract
from all possible pairs of triangles those that DO share a vertex. Remember, they
can share at most one vertex due to condition 1. Thus,

n1 + n3 + n5 + n14 =

(
p3

2

)
− n

(
k/2

2

)
=

1
12

nk(
nk

6
− 1)− 1

8
nk(k − 2).

Finally, the last relation bonds the graphs that can be obtained by choosing a
quadrilateral and an edge that is not incident to any of the vertices of the quadrilat-
eral. Notice, once a quadrilateral is chosen, the choice of an edge uniquely defines
the six-vertex graph. Thus, the coefficients in front of the quantities depend only
on number of quadrilaterals the graph has.

3n1 + 2n4 + n6 + n7 + 2n9 + n10 + n11 + n13

= p4(|E(G)| − 4(k − 2)− 4)

=
1
8
nk(k − 2)(

nk

2
− 4k + 4).

Now, when we are equipped with all the relations from Proposition 3.2, we can
proceed with (2). But first, let us remind ourselves what we are trying to achieve
with all these cumbersome calculations. We want to find n12 - the number of
subgraphs of type 12 in G, namely hexagons (Figure 3).

Rewrite (2),

2n1 − n2 + n3 + n4 + 2n5 + n6 + n7 − n8 + n9 + n10 + n11

− n12 + n13 + 2n14 =
1
2
(c6 +

(
|E(G)|

3

)
− e4 − e5).

Subtracting (9) from this expression, we obtain,

− n1 − n2 + n3 − n4 + 2n5 − n8 − n9 − n12 + 2n14

=
1
2
(c6 +

(
|E(G)|

3

)
− e4 − e5)−

1
8
nk(k − 2)(

nk

2
− 4k + 4).
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Further subtracting double of (8), we get rid of n5 and n14,

− 3n1 − n2 − n3 − n4 − n8 − n9 − n12 =
1
2
(c6 +

(
|E(G)|

3

)
− e4 − e5)

− 1
8
nk(k − 2)(

nk

2
− 4k + 4)− 1

6
nk(

nk

6
− 1) +

1
4
nk(k − 2).

The right-hand side of the expression is getting horrible, and Wolfram Alfa [12]
here is of no help (or we just didn’t find the way to use it properly), but we should
not worry about it at the moment, and rather concentrate on the left-hand side
solely. Using (3), (4) and (6), we get

− n9 − n12 =
1
2
(c6 +

(
|E(G)|

3

)
− e4 − e5)−

1
8
nk(k − 2)(

nk

2
− 4k + 4)

− 1
6
nk(

nk

6
− 1) +

1
4
nk(k − 2) +

3
4
nk(k − 2) + nk(k − 2)(k − 4).

Next, we express n9 through needed n4, using (7) and (5).

n9 =
1
4
nk(k − 2)(k − 3)− 1

4
nk(k − 2)− n4

2
.

Substituting,

n4

2
− n12 =

1
2
(c6 +

(
|E(G)|

3

)
− e4 − e5)−

1
8
nk(k − 2)(

nk

2
− 4k + 4)

− 1
6
nk(

nk

6
− 1) +

3
4
nk(k − 2) + nk(k − 2)(k − 4) +

1
4
nk(k − 2)(k − 3).

Denoting right hand side by −F (n, k), we have:

n4

2
− n12 = −F (n, k).

Notice also that from (5) and (6) n4 = 2n3. Thus,

n12 = F (n, k) + n3.

Tedious calculations are required in order to proceed further with the expression
on the right-hand side. The challenge is the coefficient c6 that is inside F (n, k).
It can be easily calculated numerically for a particular value of n and k, using the
relation

c6 = k
5∑

i=0

(
r1

5 − i

)(
r2

i

)
λ5−i

1 λi
2 +

6∑
i=0

(
r1

6 − i

)(
r2

i

)
λ6−i

1 λi
2.
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Here λ1, λ2 = eigenvalues of an adjacency matrix A(G), and r1, r2 their respective
multiplicities. In particular, the characteristic polynomial PG(x) = (x − k)(x −
λ1)

r1(x− λ2)
r2 .

Table 3: The values of c6 for several orders of G

n k c6

9 4 -168
99 14 -47,288,703

243 22 -2,975,686,065
6,273 112 -7,204,770,339,625,320

494,019 994 -2,466,795,174,682,153,663,896,408

The numerical values of c6 for several orders of G are given in the above table.
The calculations are done using Julia programming language [8]. Further heavily
relying on the computation machinery of Wolfram Alpha [12] with the use of the
additional relations for eigenvalues and their multiplicities (see West, 2-nd ed.,
p.466 [5]) such as:

λ1 + λ2 = −1;

λ1λ2 = −(k − 2);

r1 + r2 = n− 1;

we will obtain a formula

c6 = − 1
576

nk(k − 2)(3k5 + 6k4 − 84k3 + 116k2 + 124k − 240).

Finally, plugging everything back into F (n, k), the expression for n12 simplifies
to

n12 =
1

12
nk(k − 2)(2k2 − 21k + 53) + n3.

By this and n3 ≥ 0, we have proven the following statement:

Theorem 3.3. The number of hexagons in G is at least 1
12nk(k− 2)(2k2 − 21k+

53).

4 Conclusion

In this paper, we have studied the structure of a class of strongly regular graphs
with parameters λ = 1 and µ = 2. We have shown that the lower bound for the
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number of hexagons in such graphs is 1
12nk(k−2)(2k2−21k+53). We conjecture

that the lower bound is indeed the true value for p6 due to many symmetries broken
otherwise. This bound is achieved when n3 = 0, which in turn meaning that two
triangles in G connected through two edges are necessarily connected through the
third one. Given such a condition, Makhnev [4] has proved that srg(99, 14, 1, 2)
doesn’t exist.

Conjecture 4.1. The number of hexagons in strongly regular graphs with parame-
ters λ = 1 and µ = 2 is equal to 1

12nk(k − 2)(2k2 − 21k + 53).

Several things worth noticing. First, given the conjecture is true, Makhnev’s
condition holds not only for a graph with n = 99 and k = 14 but for the entire
family of strongly regular graphs with λ = 1 and µ = 2. This can be observed
for the case when k = 4 or Paley 9. Some preliminary checks show that it holds
for another known graph from the family - the Berlekamp–Van Lint–Seidel graph,
for k = 22 [7]. Second, all the graphs, except of trivial case K3, must be built of
Paley 9 graphs as building blocks if the conjecture is true. In particular, both of
the yet unknown graphs for k = 112 and k = 994 in that case have a more coarse
structure. Their P9-built structure might give us an insight on their existence as
well.

Bibliography

[1] G. Royle, List of Large Graphs and Families, https://web.archive.org/web/
20080503090520/http://people.csse.uwa.edu.au/gordon/remote/srgs/

[2] A. E. Brouwer, Parameters of Strongly Regular Graphs, https://www.win.tue.
nl/~aeb/graphs/srg/srgtab.html

[3] J. Conway, Five $ 1,000 Problems, On-Line Encyclopedia of Integer Sequences, OEIS
sequance A248380.

[4] A. Makhnev, Strongly Regular Graphs with λ = 1, Matemticheskie Zametki 44(5)
(1988) 667-672.

[5] D. B. West, Introduction to Graph Theory, Pearson Education Limited, 2nd ed., 2000.

[6] D. Cvetcovic, P. Rowlinson and S. Simic, An Introduction to the Theory of Graph
Spectra, Cambridge University Press, 2010.

[7] E. R. Berlekamp, J. H. Van Lint and J. J. Seidel, A strongly regular graph derived
from the perfect ternary Golay code, in: J. N. Srivastava (editor), A Survey of Com-
binatorial Theory, North-Holland Publishing Company, Amsterdam, 1973, p. 25-30.

[8] The Julia Programming Language, https://julialang.org/

https://web.archive.org/web/20080503090520/http://people.csse.uwa.edu.au/gordon/remote/srgs/
https://web.archive.org/web/20080503090520/http://people.csse.uwa.edu.au/gordon/remote/srgs/
https://www.win.tue.nl/~aeb/graphs/srg/srgtab.html
https://www.win.tue.nl/~aeb/graphs/srg/srgtab.html
https://julialang.org/


14 R. Reimbayev

[9] Information System on Graph Classes and their Inclusions,
https://www.graphclasses.org/smallgraphs.html#nodes4

[10] D. Cvetcovic and M. Petric, A Table of Connected Graphs on Six Vertices, Discrete
Mathematics 50 (1984) 37-49.

[11] Online Matrix Calculator App, https://matrixcalc.org/en/

[12] Wolfram Research, Inc. (2021), Mathematica Online, Champaign, IL
www.wolfram.com

Received June 11, 2024; revised August 15, 2024; accepted August 18, 2024.

Author information

Reimbay Reimbayev, Auburn University, Department of Mathematics and Statistics,
Alabama, 36849, United States of America.
E-mail: reimbay.reimbayev@gmail.com

https://www.graphclasses.org/smallgraphs.html#nodes4
https://matrixcalc.org/en/
www.wolfram.com
mailto:reimbay.reimbayev@gmail.com

