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Abstract. In this work, a non-polynomial spline function is proposed to solve a linear
fractional differential equation where the derivatives are in the Caputo sense. This ap-
proach transforms the fractional differential equation into a system of linear equations.
The Gauss-Seidel and conjugate gradient methods are used to iteratively solve the lin-
ear system. Finally, to validate the method’s accuracy, several numerical examples with
known analytical solutions are tested. According to the numerical experiments, the find-
ings are in satisfactory agreement with the exact solutions.
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1 Introduction

Fractional calculus plays a vital role in a variety of areas due to its extensive ap-
plications in several fields of science and technology, including electromagnetism,
diffusion processes, signal processing, materials modeling, and mathematical eco-
nomics (see [2,6,8,21,22]). The general concept of fractional-order differentiation
has various definitions, such as the Caputo definition [14], Riemann-Liouville def-
inition [18], and the Grunwald-Letnikov definition [17]. Several approaches to
solving fractional differential equations (FDEs) have been developed by mathe-
maticians in recent years. These include the fractional explicit Adams method
[26], the homotopy analysis method [11], the fractional finite difference method
[16], the Adomain decomposition method [12], the B-polynomial basis approach
to solve FDE by Muhammad I. Bhatti and Md. Habibur Rahman [3], the spectral
Tau method investigated by Hari Mohan Srivastava et al. [20], the Taylor basis
function presented in [13], and the matrix approach method for solving FDE dis-
cussed in [5].

The spline technique is used by many researchers to solve differential equations
due to its accuracy and efficiency. For example, a sixth-order linear special case
boundary value problem was solved using a septic degree spline [19]. Hamasalh
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F.K. et al. proposed a non-polynomial spline to solve fractional differential equa-
tions in [9].

The conjugate gradient method is a powerful technique for solving systems of
equations. The linear conjugate gradient method was proposed in the 1950s by
Hestenes and Stiefel to solve linear systems of equations with positive definite
matrices as an alternative to the Gauss elimination method [23]. Fletcher and
Reeves discussed the nonlinear conjugate gradient method in 1964 [7]. Faraidun
K.Hamasalh et al. used conjugate gradient method for solving FDEs [10]. The
conjugate gradient method is applied to the optimal solution of differential equa-
tions; more details can be found in [25].

2 Mathematical Formulation for Non-Polynomial Spline

In this study, we consider the fractional differential equation of the form

y(α) + ϕ(x)y′′ + ψ(x)y = τ(x), x ∈ [a, b], (1)

with the boundary conditions

y(a) = B1, y(b) = B2 (2)

such that ϕ(x), ψ(x), and τ(x) are functions of x, B1 and B2 are constants. Then,
the interval [a, b] can be uniformly divided into j subintervals, the length of uni-
form subintervals can be defined as: ∆x = b−a

j , n = j − 1. In the existing
literature, we can modify the model of non-polynomial spline and the fractional
continuity by using Caputo type as follows:

S(x) = Si(x), x ∈ [xi, xi+1], i = 0, 1, 2, . . . , n. (3)

Here, the non-polynomial spline function with fractional order defined by

Si(x) = αi + βi(x− xi) + γi cosω(x− xi) + δi sinω(x− xi), (4)

where αi, βi, γi, δi are constants for i = 0, 1, 2, . . . , n and ω is a free parameter.
The function Si(x) interpolates y(x) at the points xi by depending on ω. To find
the value of constants in equation (4), we impose the following conditions:

Si(xi) = yi, Si(xi+1) = yi+1, S
(1/2)
i (xi) = pi, S

(1/2)
i (xi+1) = pi+1. (5)
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After applying these conditions the values of constants αi, βi, γi, δi in (4) are
obtained as follows:
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Substituting these values in (4) we obtain
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Now, applying the fractional continuity conditions of the spline function Si(x)
where the splines S(m)

i−1 (x) = S
(m)
i (x),m = 1

2 , 1 are joined, we obtain the follow-
ing equations:

S′
i(xi) = (

√
π

2
√
h
− π

√
θ sin θ

2
√

2hM1
+ ω

√
πh

2M1
)pi+1 + (

√
πω sin θM2√

2hM1
−

√
2π sin (θ+π

4 )

2
√
h

)

+ω(
√

2√
ω
− M2

M1
)pi + (

√
πω sin θ√
2hM1

− ω
M1

)yi+1 − (
√
πω sin θ√
2hM1

− ω
M1

)yi,
(8)

S′
i−1(xi) = (

√
π

2
√
h
− π

√
θ sin θ

2
√

2hM1
+

√
πhω

2M1
(sin θ + cos θ))pi

+(
√
πω sin θM2√

2hM1
−

√
2π sin (θ+π

4 )

2
√
h

+ ω(
√

2√
ω
− M2

M1
) cos θ − ωM2 sin θ

M1
)pi−1

+(
√
πω sin θ√
2hM1

− ω
M1

(cos θ + sin θ))yi

−(
√
πω sin θ√
2hM1

− ω
M1

(cos θ + sin θ))yi−1.

(9)

Equating (8) and (9), we obtain:

C1pi+1 + C2pi + C3yi+1 + C4yi + C5pi−1 + C6yi−1 = 0. (10)

From equation (1) we have

pi+1 = −ϕi+1(x)y
′′
i+1 − ψi+1(x)yi+1 + τi+1(x),

pi = −ϕi(x)y′′i − ψi(x)yi + τi(x),

pi−1 = −ϕi−1(x)y
′′
i−1 − ψi−1(x)yi−1 + τi−1(x).

(11)
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Using backward, central, and forward difference formulas for y′′i+1, y′′i , and y′′i−1,
respectively, we obtain:

y′′i+1 =
yi+1−2yi+yi−1

h2 ,
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yi+1−2yi+yi−1

h2 ,
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(12)

Substituting (11) and (12) in equation (10), we obtain:

aiyi−1 + biyi + ciyi+1 = Fi. (13)

Then, a system of linear equations is formulated using equation (13) as follows:

Ay = F (14)

such that
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3 Numerical Experiments

In this section, the method is applied to several numerical examples of boundary
value problems for fractional differential equations and the results are compared
with exact analytical solutions to show the method’s efficiency. The computational
programs were written in MATLAB. We first present here the algorithms of Gauss-
Seidel and the conjugate gradient methods.

Algorithm 1. [4] Suppose that we have the linear system (14), where A is sym-
metric positive definite matrix. First, matrix A is decomposed as A = D+L+U
such that D is a diagonal matrix, L is strictly lower triangular matrix and U is
strictly upper triangular matrix. Then, the linear system (13) can be written as:

(D + L+ U)y = F

or
(D + L)y = −Uy + F.

Since |D + L| ≠ 0, we obtain

y = (D + L)−1Uy + (D + L)−1F.

Then, the Gauss-Seidel (GS) algorithm can be written as:
• start with an initial guess y(0) ∈ Rn;
• compute y(i+1) = −(D + L)−1Uy(i) + (D + L)−1F for i = 0, 1, 2, . . .

Algorithm 2. [23] The conjugate gradient (CG) algorithm is expressed as:
• choose y0 ∈ Rn and put d0 = r0 = F −Ay0;
• for k = 0, 1, 2, . . .

– If dk = 0, stop and yk is a solution of Ay = F .
– Otherwise, compute

* αk =
rTk rk
dTk Adk

, yk+1 = yk + αkdk,

* rk+1 = rk − αkAdk, βk =
rTk+1rk+1

rTk rk
,

* dk+1 = rk+1 + βkdk.

Example 1. [1] Consider the fractional differential equation

D(λ)y(x)+y(x) = x4− 1
2
x3+

24
Γ(5 − λ)

x4−λ− 3
Γ(4 − λ)

x3−λ, 0 < λ ≤ 1 (15)

with the boundary conditions y(0) = 0, y(1) = 1
2 and the exact solution given by

y(x) = x4 − 1
2x

3.
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The number of iterations and numerical results compared to exact values for
λ = 0.5, x ∈ [0, 1], h = 0.01 are tabulated in Tables 1 and 2, respectively.

Number of iterations

GS 450

CG 65

Table 1. The number of iterations for both methods applied to problem (15).

x Exact solution Numerical solution Absolute error Absolute error [1]

0.1 −0.0004 −0.00096 5.61 × 10−4 4.00 × 10−4

0.2 −0.0024 −0.00324 8.37 × 10−4 1.1668 × 10−3

0.3 −0.0054 −0.00498 4.19 × 10−4 2.9299 × 10−4

0.4 −0.0064 −0.00259 3.8 × 10−3 4.5080 × 10−4

0.5 0 0.008925 8.92 × 10−3 2.2930 × 10−3

0.6 0.0216 0.035829 1.42 × 10−2 6.5464 × 10−3

0.7 0.0686 0.097402 2.88 × 10−2 1.5311 × 10−2

0.8 0.1536 0.166854 1.32 × 10−4 2.7885 × 10−2

0.9 0.2916 0.290152 1.44 × 10−3 4.5954 × 10−2

Table 2. Exact solution, its numerical approximation, and absolute error in the nu-
merical solution of problem (15).

Example 2. [24] Consider the fractional differential equation

D(λ)y(x) + y(x) = x2 +
2x2−λ

Γ(3 − λ)
, 0 < λ ≤ 1 (16)

with the boundary conditions y(0) = 0 and y(1) = 1. The exact solution of (16)
is given by y(x) = x2.

The numerical result obtained for λ = 0.5, x ∈ [0, 1], h = 1
160 is tabulated in

Table 3.
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x Exact solution Numerical solution Absolute error

0.1 0.01 0.029064 1.9064 × 10−2

0.2 0.04 0.075703 3.5703 × 10−2

0.3 0.09 0.138792 4.8792 × 10−2

0.4 0.16 0.216701 5.6701 × 10−2

0.5 0.25 0.308459 5.8459 × 10−2

0.6 0.36 0.413401 5.3401 × 10−2

0.7 0.49 0.531033 4.1033 × 10−2

0.8 0.64 0.660969 2.6909 × 10−2

0.9 0.81 0.808386 1.6140 × 10−3

Table 3. Exact and numerical solutions, and absolute error for problem (16).

Example 3. [15] Consider the fractional differential equation

y′′(x) +D(λ)y(x) + y(x) = 8, 0 < λ < 1 (17)

with the boundary conditions y(0) = 0 and y(1) = 3.101906.

The numerical solution for λ = 0.5, obtained by using CG method, is presented
in Table 4.

x Exact solution Numerical solution Absolute error Absolute error [15]

0.1 0.03975 0.025277 1.4473 × 10−2 1.24 × 10−4

0.2 0.157036 0.138583 1.8453 × 10−2 1.476 × 10−3

0.3 0.347370 0.333777 4.8792 × 10−2 6.255 × 10−3

0.4 0.604695 602914 5.6701 × 10−2 1.73 × 10−2

0.5 0.921768 0.935951 5.8459 × 10−2 3.82 × 10−2

0.6 1.290457 1.320995 5.3401 × 10−2 7.26 × 10−2

0.7 1.702008 1.744681 4.1033 × 10−2 1.2424 × 10−1

0.8 2.147287 2.19264 2.0969 × 10−2 1.9693 × 10−1

0.9 2.617001 2.649994 1.614 × 10−3 2.9427 × 10−1

Table 4. Exact and numerical solutions, and absolute error for problem (17).



Solving fractional differential equations with non-polynomial splines 33

4 Conclusion

This paper develops a trigonometric spline method for solving fractional differ-
ential equations in conjunction with the conjugate gradient method. The findings
related to non-polynomial spline functions are particularly interesting. The nu-
merical examples illustrate that the non-polynomial spline and conjugate gradient
approaches are more adaptive in approximating functions.
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