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Abstract. Let B be a complete Boolean algebra, Q(B) the Stone compact of B, and let
C∞(Q(B)) be the commutative unital algebra of all continuous functions x : Q(B) →
[−∞,+∞], assuming possibly the values ±∞ on nowhere-dense subsets of Q(B). Let
(E, ∥ · ∥E) ⊂ C∞(Q(B)) be a Banach-Kantorovich lattice over the algebra L0(Ω) of
equivalence classes of almost everywhere finite real-valued measurable functions on a
measurable space (Ω,Σ, µ) with σ-finite measure µ. The paper defines the p-convexification
of the Banach-Kantorovich lattice (E, ∥·∥E) and proves that it is also a Banach-Kantorovich
lattice over L0(Ω).
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1 Introduction

One of the important tools in studying the isomorphic properties of Banach lattices
is the concepts of p-convexity and q-concavity of these lattices. For example, these
concepts are actively used in the study of the uniform convexity in Banach lattices,
as well as in the study of the properties of symmetric functional spaces (see [1]).

In [1], a general procedure for constructing p-convex and q-concave lattices
is given, starting from an arbitrary Banach lattice, namely, for a given Banach
lattice X , its p-convexification Xp is determined. In case X is a Banach lattice of
functions, Xp can be identified with the space of all functions f so that |f |p ∈ X

equipped with the norm ∥f∥Xp = ∥|f |p∥
1
p

X . It is known that for a Banach lattice
(X, ∥·∥X), its p-convexification (Xp, ∥·∥Xp) is also a Banach lattice. In addition,
properties such as the order continuity of the norm and the Fatou property carry
over from X to Xp.

The development of the theory of Banach-Kantorovich spaces naturally in-
volves the introduction and study of the properties of p-convexity and q-concavity
of these spaces.
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Let B be a complete Boolean algebra, Q(B) the Stone compact of B. De-
note by L0(B) the algebra C∞(Q(B)) of all continuous functions x : Q(B) →
[−∞,+∞], assuming possibly the values ±∞ on nowhere-dense subsets of Q(B).

Let (E, ∥ · ∥E) ⊂ L0(B) be a lattice-normed space over the algebra L0(Ω) of
equivalence classes of almost everywhere finite real-valued measurable functions
on a measurable space (Ω,Σ, µ) with σ-finite measure µ. In this paper, we define
the p-convexification of a lattice-normed space (E, ∥ · ∥E) and prove that if
(E, ∥ · ∥E) is a Banach-Kantorovich lattice over L0(Ω), then its p-convexification
is also a Banach-Kantorovich lattice over L0(Ω).

We use the terminology and notation of the theory of Boolean algebras from
[2], the theory of vector lattices from [3], the theory of vector integration and the
theory of Banach-Kantorovich spaces from [4], as well as the terminology of the
general theory of Banach lattices from [1].

2 Preliminaries

Let E be a vector lattice, i.e. an ordered vector space that is also a lattice. Thereby
in a vector lattice there exist a least upper bound sup{x1, . . . , xn} := x1 ∨ . . .∨xn
and a greatest lower bound inf{x1, . . . , xn} := x1 ∧ . . . ∧ xn for every finite
set {x1, . . . , xn} ⊂ E. In particular, every element x ∈ E has the positive part
x+ := x ∨ 0, the negative part x− := (−x)+;= −x ∧ 0, and the modulus |x| :=
x∨ (−x) = x+ + x−. Let E+ = {x ∈ E : x ≥ 0}. An order interval in E is a set
of the form [a, b] := {x ∈ X : a ≤ x ≤ b}, where a, b ∈ E. Two elements x and
y are called disjoint if |x| ∧ |y| = 0.

A linear subspace J of a vector lattice E is called an order ideal if the inequality
|x| ≤ |y| implies x ∈ J for arbitrary x ∈ E and y ∈ J . Every order ideal of a
vector lattice is a vector lattice. A set in E is called order bounded if it is included
in some order interval.

A vector lattice is called Dedekind complete if every non-empty order bounded
set in it has least upper and greatest lower bounds. If, in a vector lattice, least upper
and greatest lower bounds exist only for countably bounded sets, then it is called
σ-Dedekind complete.

We say that a Dedekind complete (σ-Dedekind complete) vector lattice is ex-
tended if its every subset (countably subset) of pairwise disjoint elements is bounded.

Let (Ω,Σ, µ) be a σ-finite measure space, and let L0(Ω) = L0(Ω,Σ, µ) be the
algebra of equivalence classes of almost everywhere finite real-valued measurable
functions on (Ω,Σ, µ). With respect to the partial order f ≤ g ⇔ g − f ≥ 0
(almost everywhere), the algebra L0(Ω) is a Dedekind complete vector lattice with
a weak unit 1(ω) ≡ 1, and the set B(Ω) of all idempotents in L0(Ω) is a complete
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Boolean algebra with respect to the partial order induced from L0(Ω).
Let X be a vector space over the field R of real numbers. A mapping ∥ · ∥ :

X → L0(Ω) is called an L0(Ω)-valued norm on X if the following relations hold
for any x, y ∈ X and λ ∈ R :

(1) ∥x∥ ≥ 0, ∥x∥ = 0 ⇔ x = 0;

(2) ∥λx∥ = |λ| ∥x∥;

(3) ∥x+ y∥ ≤ ∥x∥+ ∥y∥.

The pair (X, ∥ · ∥) is called a lattice-normed space (LNS for short) over L0(Ω).
A lattice-normed space X is said to be decomposable (d-decomposable) if for
any x ∈ X and any decomposition ∥x∥ = f1 + f2 into a sum of nonnegative
(respectively, disjunct) elements f1, f2 ∈ L0(Ω), there exist x1, x2 ∈ X such that
x = x1 + x2, and ∥xk∥ = fk, k = 1, 2.

Suppose that X is a vector lattice. The norm ∥ · ∥ is monotone if |x| ≤ |y|
implies ∥x∥ ≤ ∥y∥ for x, y ∈ X . If a lattice-normed space (X, ∥ · ∥) over L0(Ω)
is a vector lattice with a monotone norm, then it is called a lattice-normed vector
lattice over L0(Ω).

A net {xα}α∈A of elements of (X, ∥ · ∥) is said to (bo)-converge to x ∈ X if
the net {∥x−xα∥}α∈A (o)-converges to zero in the lattice L0(Ω) (recall that the o-
convergence of a net in L0(Ω) is equivalent to its convergence almost everywhere).
A net {xα}α∈A ⊂ X is called (bo)-fundamental if the net {xα − xβ}(α,β)∈A×A

(bo)-converges to zero. A lattice-normed space is called (bo)-complete if every
(bo)-fundamental net in it (bo)-converges to an element of this space.

Every d-decomposable (bo)-complete lattice-normed space is called a Banach-
Kantorovich space (BKS for short). If a Banach Kantorovich space is in addition
a vector lattice and the norm is monotone, then it is called a Banach-Kantorovich
lattice. Every BKS is a decomposable LNS (see [4],[5]).

The theory of the integral of elements of an extended σ-Dedekind complete
vector lattice by a σ-additive measure with values in a bo-complete lattice-normed
space has proved to be very effective for constructing useful examples of Banach-
Kantorovich spaces. Let us recall some basic notions of the theory of vector inte-
gration (see [4],[6]).

Let B be a complete Boolean algebra with zero 0 and unit 1. The exact upper
and lower bounds of a set {e, q} ⊂ B are denoted by e ∨ q and e ∧ q. A Boolean
subalgebra A in B is called a regular if supE ∈ A, and infE ∈ A for any subset
E ⊂ A. Every regular Boolean subalgebra in B is a complete Boolean algebra.

A mapping m : B → L0(Ω) is called a L0(Ω)-valued measure if it satisfies
the following conditions: m(e) ≥ 0 for all e ∈ B; m(e ∨ g) = m(e) +m(g) for
any e, g ∈ B with e ∧ g = 0; m(eα) ↓ 0 for any net eα ↓ 0, {eα} ⊂ B.
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A measure m is said to be strictly positive, if m(e) = 0 implies e = 0. A
strictly positive L0(Ω)-valued measure m is said to be decomposable, if for any
e ∈ B and a decomposition m(e) = f1 + f2, f1, f2 ∈ L0(Ω)+ there exist
e1, e2 ∈ B, such that e = e1 ∨ e2, m(e1) = f1 and m(e2) = f2. A measure
m is decomposable if and only if it is a Maharam measure, that is, the measure m
is strictly positive and for any e ∈ B, 0 ≤ f ≤ m(e), f ∈ L0(Ω), there exists
q ∈ B, q ≤ e such that m(q) = f [7].

The following statement shows that, in the case of the Maharam measure m,
there is a natural embedding of the Boolean algebra B(Ω) into the Boolean algebra
B.

Proposition 2.1. [8, Proposition 3.2] For each L0(Ω)-valued Maharam measure
m : B → L0(Ω) there exists a unique injective completely additive Boolean ho-
momorphism φ : B(Ω) → B such that φ(B(Ω)) is a regular Boolean subalgebra
of B, and m(φ(q)e) = qm(e) for all q ∈ B(Ω), e ∈ B.

Let Q(B) be the Stone compact of a complete Boolean algebra B, and let
L0(B) := C∞(Q(B)) be the algebra of all continuous functions x : Q(B) →
[−∞,+∞], assuming possibly the values ±∞ on nowhere-dense subsets of Q(B).
With respect to the partial order x ≤ y ⇔ y(t) − x(t) ≥ 0 for all t ∈
Q(B) \

(
x−1(±∞) ∪ y−1(±∞)

)
, the algebra L0(B) is an extended σ-Dedekind

complete vector lattice (see [[4, 1.4.2]]).
We identify B with the complete Boolean algebra of all idempotents in L0(B),

i.e., we assume B ⊂ L0(B). According to Proposition 2.1, for the Maharam
measure m : B → L0(Ω), there exists a regular Boolean subalgebra ∇(m) in B
and a Boolean isomorphism φ from B(Ω) onto ∇(m) such that m(φ(q)e) =
qm(e) for all q ∈ B(Ω), e ∈ B. In this case, the algebra L0(Ω) is identified with
the algebra L0(∇(m)) = C∞(Q(∇(m))) (the corresponding isomorphism will
also be denoted by φ), and the algebra C∞(Q(∇(m))) itself can be considered
as a subalgebra and as a regular vector sublattice in L0(B) (this means that the
exact upper and lower bounds for bounded subsets of L0(∇(m)) are the same in
L0(B) and in L0(∇(m)) ).

Denote by N the set of all natural numbers, and for each element x ∈ L0(B)
we define its carrier s(x) := sup

n∈N
{|x| > n−1}, where {|x| > λ} ∈ B is the

characteristic function χEλ
of the set Eλ which is the closure in Q(B) of the set

{t ∈ Q(B) : |x(t)| > λ}, λ ∈ R.

We now specify the vector integral of the [4] for elements of some abstract
σ-Dedekind complete vector lattice. Take as an extended σ-Dedekind complete
vector lattice the algebra L0(B). Consider in L0(B) the vector sublattice S(B) of
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all B-simple elements of x =
n∑
i=1

αiei, where α1, . . . , αn ∈ R and e1, . . . , en ∈ B

are pairwise disjoint. Let m : B → L0(Ω) be a L0(Ω)-valued measure on B. If
x ∈ S(B) then we put by definition

Im(x) :=
∫

x dm :=
n∑

k=1

αkm(ek).

As it was described in [4], the integral Im can be extended to the spaces of m-
integrable elements L1(B,m). On identifying equivalent elements, we obtain the
Kσ-space L1(B,m). For each x ∈ L1(B,m) (the entry x ∈ L1(B,m) means that
an equivalence class with a representative of x is considered) the formula

∥x∥1,m :=
∫

|x|dm

defines an L0(Ω)-valued norm, that is (L1(B,m), ∥x∥1,m) is a lattice-normed
space over L0(Ω) (see [4, 6.1.3]). Moreover, in the case when m : B → L0(Ω) is
a Maharam measure, the pair (L1(B,m), ∥x∥1,m) is a Banach-Kantorovich space.
In addition, L0(∇(m)) · L1(B,m) ⊂ L1(B,m),

∫
(φ(α)x)dm = α

∫
xdm for

all x ∈ L1(B,m), α ∈ L0(Ω) [4, Theorem 6.1.10].

Let p ∈ [1,∞), and let

Lp(B,m) = {x ∈ L0(B) : |x|p ∈ L1(B,m)},

∥x∥p,m :=
[ ∫

|x|pdm
] 1
p , x ∈ Lp(B,m).

It is known that for the Maharam measure m the pair (Lp(B,m), ∥x∥p,m) is the
Banach-Kantorovich space [6, 4.2.2]. In addition,

φ(α)x ∈ Lp(B,m) ∀ x ∈ Lp(B,m), α ∈ L0(Ω), 1 ≤ p < ∞,

and ∥φ(α)x∥p,m = |α|∥x∥p,m.

3 On p-convexification of Banach-Kantorovich lattices over the ring
of measurable functions

Let m be an L0(Ω)-valued Maharam measure on a complete Boolean algebra B.
In the rest of this section we assume that m(1) = 1.

Let E be a nonzero linear subspace in L0(B), and let ∥ · ∥E be an L0(Ω)-
valued norm on E, which endows E with the structure of a lattice-normed vector
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lattice over L0(Ω). Let 0 < p, q < ∞. The lattice-normed vector lattice E is said
to be p-convex (respectively, q-concave) if and only if there exists a constant
M > 0 such that, for any finite sequence {xk}nk=1 ⊂ E,

∥∥( n∑
k=1

|xk|p
)1/p∥∥

E
≤ M

( n∑
k=1

∥xk∥pE
)1/p

, (1)

respectively, ( n∑
k=1

∥xk∥qE
)1/q ≤ M

∥∥( n∑
k=1

|xk|q
)1/q∥∥

E
. (2)

The least constant M > 0 satisfying (1) (respectively (2)) is called the p-
convexity (respectively, q-concavity) constant of E and will be denoted by M (p)(E)
(respectively, M(q)(E)). It is clear that lattice-normed vector lattice E over L0(Ω)
is 1-convex with convexity constant 1. If E = Lp(B,m), 1 ≤ p < ∞, then for all
finite sequences {xk}nk=1 ⊂ Lp(B,m),

∥∥( n∑
k=1

|xk|p
)1/p∥∥

p,m
=

( n∑
k=1

∥xk∥pp,m
)1/p

.

Consequently, Lp(B,m) is p-convex and q-concave and moreover

M (p)(Lp(B,m)) = M(p)(L
p(B,m)) = 1.

Let E ⊆ L0(B) is a lattice-normed vector lattice over L0(Ω). Since L0(B) is a
σ-Dedekind complete vector lattice, then E is an order ideal. Hence, E is also a σ-
Dedekind complete vector lattice. In addition, it is possible to define the structure
of the L0(Ω)-module on E as follows: λ · x = φ(λ)x, x ∈ E, λ ∈ L0(Ω),
where φ is an isomorphism from L0(Ω) to L0(∇(m)) (see the remark made after
Proposition 2.1).

Following the work [1, chapter 1, section d], we consider the construction of
p-convexification for lattice-normed vector lattices (E, ∥ · ∥E) over L0(Ω).

First of all, let us focus on the concept of the p-th degree of an element of space
L0(B). Let’s take an arbitrary x ∈ L0(B), x ≥ 0. The set G = {t ∈ Q(B) :
−∞ < x(t) < +∞} is dense and open in Q(B). For the number p ≥ 0, put
y(t) = (x(t))p, t ∈ G. Since y = y(t) is a continuous function on G, there
exists a unique continuous extension of y(t) onto the whole of Q(B) (see [3],
Lemma V.2.1). Denote this extension by xp. Note that xp(t) = +∞ if and only if
x(t) = +∞.

For 1 ≤ p < ∞, the set E(p) ⊆ L0(B) is defined by setting

E(p) = {x ∈ L0(B) : |x|p ∈ E},
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and set

∥x∥E(p) = ∥|x|p∥
1
p

E , x ∈ E(p).

It is clear that in the case of E = (L1(B,m), ∥ · ∥1,m) the equalities hold

L1(B,m)(p) = Lp(B,m) : = {x ∈ L0(B) : |x|p ∈ L1(B,m)},

∥x∥L1(B,m)(p) = ∥|x|p∥
1
p

1,m = ∥x∥p,m.

Let us first show that (E(p), ∥ · ∥E(p)) is a lattice-normed vector lattice over
L0(Ω).

Lemma 3.1. E(p) is an order ideal in L0(B), that is, a linear subspace in L0(B)
with the property of ideality.

Proof. It is clear that αx ∈ E(p) whenever x ∈ E(p) and α ∈ R. Let x, y ∈ E(p),
e1 = {|x| ≥ |y|} := s((|x|−|y|)+), e2 = 1−e1. Then it follows from the estimate

|x+ y|pe1 ≤ (|x|+ |y|)pe1 = (|x|e1 + |y|e1)
p ≤ 2p|x|pe1 ≤ 2p|x|p

and from the fact that E is an order ideal in L0(B), that |x+y|pe1 ∈ E. Similarly,
|x + y|pe2 ∈ E. Consequently, |x + y|p = |x + y|pe1 + |x + y|pe2 ∈ E, and
x+y ∈ Ep. Thus, E(p) is a linear subspace in L0(B). Furthermore, it is clear that
x ∈ E(p) whenever x ∈ L0(B) satisfies |x| ≤ |y| for some y ∈ E(p).

Lemma 3.2. Suppose that 1 < p, q, r < ∞ satisfy 1/p+1/q = 1/r. If x ∈ E(p)

and y ∈ E(q), then xy ∈ E(r) and ∥xy∥E(r) ≤ ∥x∥E(p)∥y∥E(q) .

Proof. Consider first the case that r = 1. For a proof, it may be assumed that
∥x∥E(p) = ∥y∥E(q) = 1. Young’s inequality

|xy| ≤ 1
p
|x|p + 1

q
|y|q,

implies that xy ∈ E and that

∥xy∥E ≤ 1
p
∥|x|p∥E +

1
q
∥|y|q∥E =

1
p
+

1
q
= 1.

This proves the case r = 1.
To prove the general case, suppose that x ∈ E(p) and y ∈ E(q). Observing

that |x|r ∈ E(p/r) and |y|r ∈ E(q/r), it follows from the first part of the proof
that |xy|r ∈ E and that

∥xy∥E(r) = ∥|xy|r∥1/r
E ≤ ∥|x|r∥1/r

E(p/r)∥|y|r∥
1/r
E(q/r) = ∥x∥E(p)∥y∥E(q) .
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Lemma 3.3. ∥ · ∥E(p) is a monotone L0(Ω)-valued norm on E(p).

Proof. It is clear that ∥αx∥E(p) = |α|∥x∥E(p) for all x ∈ E(p) and α ∈ R. More-
over, ∥x∥E(p) ≥ 0 and ∥|x|p∥E = 0 if and only if x = 0.

For the proof of the triangle inequality it may be assumed that p > 1. Let
x, y ∈ E(p), f = ∥x∥p

E(p) , g = ∥y∥p
E(p) , h = ∥x + y∥p

E(p) . It must be shown that
h1/p ≤ f1/p + g1/p. It is clear that |x + y|p−1 ∈ E(q) with ∥|x + y|p−1∥E(q) =

∥x + y∥p/q
E(p) (where 1/p + 1/q = 1). Therefore, via Lemma 3.2 (with r = 1), it

follows that

∥x+ y∥p
E(p) = ∥|x+ y|p∥E = ∥|x+ y||x+ y|p−1∥E ≤

∥|x||x+ y|p−1∥E + ∥|y||x+ y|p−1∥E ≤ (∥x∥E(p) + ∥y∥E(q))∥x+ y∥p/q
E(p) .

Thus, we have the following inequality h ≤ h1/q(f1/p+g1/p). Therefore, h1/q(f1/p+
g1/p − h1/p) ≥ 0, which implies that f1/p + g1/p − h1/p ≥ 0. Indeed, if we
assume that there is an idempotent e ∈ B(Ω) and a number ε > 0 such that
(f1/p+g1/p−h1/p)e < −εe, then he ̸= 0, and multiplying both parts of the latter
inequality by h1/qe, we get h1/q(f1/p + g1/p − h1/p)e < 0, which contradicts to
what has already been proven.

Now, if x, y ∈ E(p) and |x| ≤ |y|, then |x|p ≤ |y|p, and therefore

∥x∥E(p) = ∥|x|p∥1/p
E ≤ ∥|y|p∥1/p

E = ∥y∥E(p) .

Thus, ∥ · ∥E(p) is a monotone L0(Ω)-valued norm on E(p).

The space (E(p), ∥ · ∥E(p)) is called the p-convexification of the lattice-normed
vector lattice (E, ∥ · ∥E). It has thus been shown that the following holds.

Proposition 3.4. If (E, ∥ · ∥E) is a lattice-normed vector lattice over L0(Ω), then
its p-convexification is also a lattice-normed vector lattice over L0(Ω).

Remark 3.5. The p-convexification E(p) of any lattice-normed vector lattice E is
p-convex with a convexity constant equal to 1, i.e. M (p)(E(p)) = 1.

Indeed, if x1, . . . , xn ∈ E, then∥∥( n∑
k=1

|xk|p
) 1

p
∥∥
E(p) =

∥∥ n∑
k=1

|xk|p
∥∥ 1

p

E ≤
( n∑
k=1

∥|xk|p∥E
) 1

p =
( n∑
k=1

∥xk∥pE(p)

) 1
p .

To prove the completeness of the lattice-normalized space (E(p), ∥ · ∥E(p)), we
need an analogue of the well-known Amemiya’s theorem (see, for example, [9,
Chapter X,§3, Theorem 2]) for lattice-normed lattices over L0(Ω). The following
is a variant of the Amemiya’s theorem, established in [10, Theorem 3.2].
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Theorem 3.6. Let (E, ∥ · ∥) be a lattice-normed vector lattice over L0(Ω). The
following statements are equivalent:

(i) (E, ∥ · ∥) is a (bo)-complete lattice-normed space;

(ii) any positive increasing (bo)-fundamental sequence in E (bo)-converges;

(iii) for any positive increasing (bo)-fundamental sequence {xn}n∈N there exists
x = sup

n∈N
xn ∈ E.

We also need the following result.

Lemma 3.7. Let x, y ∈ L0(B) and x ≥ y > 0. Then for any p ≥ 1 the following
inequality is valid:

xp − yp ≤ pxp−1(x− y).

Proof. To prove, we can assume that p > 1 and x > y. Since x > 0 and y > 0,
then there are x−1, y−1 ∈ L0(B). Put z = xy−1. Then since z > 1 and p > 1,
we have zp > z. Hence, z + p < zp + z1−p, that is zp + z1−p − z − p > 0, or
xy−1p + x1−pyp−1 − xy−1 − p > 0. Further multiplying both parts of the latter
inequality by yxp−1 > 0, we get xpp + yp − xp − pyxp−1 > 0. From here, we
finally get xp − yp ≤ pxp−1(x− y).

The following theorem is a version of Proposition 3.4 for Banach-Kantorovich
lattices over L0(Ω).

Theorem 3.8. If (E, ∥ · ∥E) is a Banach-Kantorovich lattice over L0(Ω), then its
p-convexification (E(p), ∥·∥E(p)) is also a Banach-Kantorovich lattice over L0(Ω).

Proof. We show that the norm ∥ · ∥E(p) is d-decomposable. Since ∥ · ∥E is a
d-decomposable L0(Ω)-valued norm on E, then for any element x ∈ E and any
decomposition ∥x∥E = f1 + f2, where f1, f2 ∈ L0

+(Ω), f1f2 = 0, there are
x1, x2 ∈ E such that x = x1 + x2 and ∥xk∥E = fk, k = 1, 2. Let ei = s(fi),
i = 1, 2. Then, e1e2 = 0 and xi = x · ei, i = 1, 2.

Let y ∈ E(p), ∥y∥E(p) = g1 + g2, where g1, g2 ∈ L0
+(Ω), g1g2 = 0, i.e.

∥yp∥E = ∥y∥p
E(p) = gp1 + gp2 . Put qi = s(gpi ) and yi = y · qi, i = 1, 2. Then,

ypi = yp · qi and, using the d-decomposability of the norm ∥ · ∥E for x = yp, fi =
gpi , i = 1, 2, we obtain that yp · q1 + yp · q2 = yp and ∥y · qi∥E(p) = gi, i = 1, 2.
Since q1q2 = 0, y · q1 + y · q2 = y.

We now show that the lattice-normed vector lattice (E(p), ∥ · ∥E(p)) is (bo)-
complete. To prove this, we can assume that p > 1 and let q > 1 such that
1
p + 1

q = 1. Let {xn} be positive increasing (bo)-fundamental sequence of E(p).
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By Theorem 3.6, it is sufficient to show that there exists x = sup
n∈N

xn ∈ E(p). Let

λ = sup
n∈N

∥xn∥E(p) . For n ≥ m according to Lemma 3.7 we have the following

estimate
0 ≤ xpn − xpm ≤ pxp−1

n (xn − xm).

Applying Lemma 3.3, we get

∥xpn − xpm∥E ≤ p∥xp−1
n ∥E(q)∥(xn − xm)∥E(p)

= p∥xn∥p/qE(p)∥(xn − xm)∥E(p) ≤ pλp/q∥(xn − xm)∥E(p) .

This implies that {xpn} is positive increasing (bo)-fundamental sequence in E.
Since E is (bo)-complete, it follows that there exists 0 ≤ y ∈ E such that
y = sup

n∈N
xpn (Theorem 3.6). Consequently, 0 ≤ x = y1/p ∈ E(p) and x =

sup
n∈N

xn. It remains to use Theorem 3.6 again, by virtue of which (E(p), ∥ · ∥E(p))

is (bo)-complete. Thus, (E(p), ∥ · ∥E(p)) is a (bo)-complete decomposable lattice-
normalized vector lattice. Therefore (E(p), ∥ · ∥E(p)) is a Banach-Kantorovich lat-
tice over L0(Ω).

Conclusion

In this paper, the concepts of p-convexity and q-concavity in lattice-normed vector
lattices (E, ∥·∥E) over the ring of measurable functions are introduced and proper-
ties associated with these concepts are considered. A principal result of the paper
is that, if (E, ∥ · ∥E) is a Banach-Kantorovich lattice, then its p-convexification
(E(p), ∥ · ∥E(p)) is also a Banach-Kantorovich lattice.
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