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Abstract. This paper presents the existence and uniqueness of the weak solution for the
nonlinear system of sine-Gordon equations which describes DNA dynamics. An uncon-
ditionally stable second order difference scheme generated by the unbounded operator A2

corresponding to the system of sine-Gordon equations is considered. Weak solutions are
a more general type of solution to the system of sine-Gordon equations than classical so-
lutions and are important in the case of low regularity conditions. The weak solvability is
studied in the space of distributions using variational methods. A very efficient numerical
method that combines the finite difference method and the fixed point theory is used to
perform numerical experiments to verify theoretical statements.
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1 Introduction

Wave phenomena are effectively described by hyperbolic partial differential equa-
tions (PDEs), but classical solutions, which require high smoothness, often fail to
capture the complexities of real-world behavior. This limitation has led to weak
solutions, a practical mathematical framework that reduces smoothness require-
ments, enabling the modeling of discontinuities such as shock waves and material
failure. These phenomena are critical in physics, where sudden changes frequently
occur in various systems.

Weak solutions, constructed in the space of distributions using variational or
energy methods, extend the applicability of hyperbolic PDEs by providing a more
adaptable and accurate approach for analyzing and representing complex wave
behavior. This framework connects mathematical precision with the challenging
nature of physical processes, making it a fundamental tool in modern physics (see,
[1, 2, 4–6, 11, 13, 21, 22, 27, 28, 35]). In the research on the mathematical model-
ing of many phenomena in physics, biology, engineering in particular relativistic
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quantum mechanics, acoustics, biomedical engineering, and field theory are wave-
type equations and are of great interest (see, [12–14, 18, 26, 30–32]). In In recent
decades many mathematicians have been studying the theoretical and numerical
research fields of nonlinear systems for sine-Gordon, Klein-Gordon, and coupled
sine-Gordon equations (see, [6, 12–14, 26, 32]). Nowadays, these type of prob-
lems get more attention due to the existence of solitons. Nonlinear equations of
the soliton type are waves that occur in proteins, DNA, and signal conduction be-
tween neurons (cf., [30]). The system{

utt − uxx = −δ2 sin(u− v),

vtt − vxx = sin(u− v)

models the DNA dynamics. This type of system models the open states in DNA
double helices and is studied by many scientists (see, [12, 28, 30, 32, 33] and the
references given therein). In this paper, we use the proof methodology and Math-
ematical tools of Temam R. et al. (see, [1, 2, 4, 21, 22]). This article uses second-
order hyperbolic evolution equations in the following form. Let ΩT = Ω× (0, T ] ,
with T > 0, and S = [0, T ]×Γ for Γ = ∂Ω, Ω = Ω∪Γ, and Ω ⊂ Rn be an open
and bounded set. A widely known (see, [6]) initial/boundary-value problem is

wtt + wt + Lw = f, in ΩT

w = 0 on S,
w = g, wt = h on ∈ Ω × {t = 0},

(1)

with given functions f : ΩT → R, g, h : Ω → R, and w : ΩT → R is the
unknown, w (x, t) . Here L denotes a partial differential operator for each time t
in the form

Lw = −
n∑

i,j=1

aij (x, t)wxixj +

n∑
i=1

bi (x, t)wxi + c (x, t)w (2)

for the coefficients aij , bi, c (i, j = 1, . . . , n).
In this work, the second order differential operator

Lw = −a (x, t)wxx + b (x, t)wx + c (x, t)w (3)

for the coupled system of problem (1) for ΩT and Ω ⊂ R. Here, we will assume
initially the coefficints a, b, c ∈ C1

(
ΩT

)
and f ∈ L2 (ΩT ), g ∈ H1

0 (Ω), h ∈
L2(Ω).
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In the present paper the weak solutions of second-order of accuracy uncondi-
tionally stable difference scheme corresponding to the nonlinear system of coupled
sine-Gordon equations{

∂2u
∂t2 + α11

∂u
∂t + α12

∂v
∂t − β1∆u+ γ1 sin (δ11u+ δ12v) = f in ΩT ,

∂2v
∂t2 + α21

∂u
∂t + α22

∂v
∂t − β2∆v + γ2 sin (δ21u+ δ22v) = g in ΩT

(4)

with boundary conditions

u = 0 and v = 0 on S, (5)

and initial conditions

u(0, x) = φ1(x) and
∂u

∂t
(0, x) = ψ1(x) in Ω × {t = 0}, (6)

v(0, x) = φ2(x) and
∂v

∂t
(0, x) = ψ2(x) in ∈ Ω × {t = 0} (7)

is studied. Here, Ω ⊂ R is a bounded open set and ∆ is Laplacian. The coefficients
αij , βi, γi, δij , ρij are nonzero real numbers for i, j = 1, . . .. We denote

f̃ (t, x, u, v, ut, vt) = f(t, x)− γ1 sin (δ11u+ δ12v)− α11ut − α12vt,

g̃ (t, x, u, v, ut, vt) = g(t, x)− γ2 sin (δ21u+ δ22v)− α21ut − α22vt.

The source functions f̃ and g̃ satisfy the Lipschitz conditions∣∣f̃ (t, x, w1, (w1)t)− f̃ (t, x, w2, (w2)t)
∣∣ ≤ L [|w1 − w2|+ |(w1)t − (w2)t|] .

with w = (u, v) on ΩT , where L is a positive constant.
The neighboring atoms, and related kinetic energy are described by higher order

derivatives. The sine trigonometric function which is a nonlinear terms containing
stands for the potential energy. The rest of the terms are source functions and
damping terms.

Let A = −∆ be a self-adjoint positive definite unbounded operator in a Hilbert
space H . One can write problem (4)-(7) as follows

∂2u
∂t2 + α11

∂u
∂t + α12

∂v
∂t + β1Au+ γ1sin (δ11u+ δ12v) = f, 0 < t < T,

∂2v
∂t2 + α21

∂u
∂t + α22

∂v
∂t + β2Av + γ2 sin (δ21u+ δ22v) = g, 0 < t < T,

u(0) = φ1 ∈ V, u
′
(0) = ψ1 ∈ H,

v(0) = φ2 ∈ V, v
′
(0) = ψ2 ∈ H.

(8)

Here, V is the Hilbert space satisfying the relation V ⊂ H .
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Existence and uniqueness of problem (8) is considered as the limit of second
order of accuracy unconditionally stable difference scheme generated by A2



τ−2(uk+1 − 2uk + uk−1) + β1Auk +
β1τ

2

4 A2uk+1

+α11
2τ (uk+1 − uk−1) +

α12
2τ (vk+1 − vk−1)

+γ1 sin (δ11uk + δ12vk) = fk,

fk = f(tk), tk = kτ, 1 ≤ k ≤ N − 1, Nτ = 1,

τ−2(vk+1 − 2vk + vk−1) + β2Avk +
β2τ

2

4 A2vk+1

+α21
2τ (uk+1 − uk−1) +

α22
2τ (vk+1 − vk−1)

+γ2 sin (δ21uk + δ22vk) = gk,

gk = g(tk), tk = kτ, 1 ≤ k ≤ N − 1, Nτ = 1,

u
′
(0) = (I + τ 2A

4 )τ−1 (u1 − u0)− τ
2

(
f̃0 −Au0

)
= ψ1,

v
′
(0) = (I + τ 2A

4 )τ−1 (v1 − v0)− τ
2 (g̃0 −Av0) = ψ2

(9)

with a damping term for the nonlinear system. For the solution of (9) we consider
the set of a family of grid points

Ωh = [0, T ]τ × [0, L]h = {(tk, xn) : tk = kτ, 0 ≤ k ≤ N,

Nτ = T, xn = nh, 0 ≤ n ≤M,Mh = L} (10)

with parameters τ , h, and constants T, L. Here fk, gk, φ1, φ2, ψ1, and ψ2 are
given nonzero elements. The unconditional stability and the convergence of the
linear undamped form of difference scheme (9) is presented in [18, 20].

The weak and global solutions, nonlinear dynamics of partial differential equa-
tions, finite difference, and finite element methods are extensively studied by many
scientists (see, [18-28] and the references given therein).

2 Preliminaries and problem settings

In this section, several theoretical statements that are necessary for the the sequel
will be presented. For the results of the elementary spectral theory, and bilinear
forms we refer to [1, 2, 4, 6–8, 10, 16]. We use the Hilbert spaces H = L2 (Ω),
V = H1

0 (Ω), and dual space V
′
= H−1

0 (Ω). The inner product

(v, w) =

∫
Ω

v(x)w(x)dx, |v| = (v, v)1/2 , ∀w, v ∈ L2 (Ω) , (11)
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and the norm

((v, w)) =
n∑
i=1

∫
Ω

∂

∂xi
v(x)

∂

∂xi
w(x)dx, ∥v∥ = ((v, v))1/2 ,∀w, v ∈ H1

0 (Ω)

(12)
are equipped for these spaces.

We have the embedding V ↪→ H ≡ H ′ ↪→ V ′ with V ′ = H−1 (Ω) , and
the pair (V,H) is a Gelfand triple space. We consider continuous, dense, and
compact embedding V ⊂ H and H ⊂ V ′. The weak solutions are studied in the
establishments of the triple space. In the variational formulation, a bilinear form

a(w, v) =

∫
Ω

∇w.∇vdx = ((w, v)) ,∀w, v ∈ V = H1
0 (Ω), (13)

will be used which is symmetric on V × V = H1
0 (Ω)2 and bounded. Moreover,

the bilinear form is coercive and satisfies

a(w,w) ≥ µi ∥w∥2 , i = 1, . . . ,∀w ∈ V. (14)

Let the operator A that is an isomorphism from V onto V ′ and A = −∆ with
relation

(Aw, v) = a ((w, v)) . (15)

Here A is self-adjoint, unbounded operator in H with dense domain D(A) =
{w ∈ V |Aw ∈ H} in H and in V . When the bilinear form a is symmetric, it

follows that A is self-adjoint (from V into V ′ and as an unbounded operator in H)

⟨Av,w⟩ = ⟨Aw, v⟩ = a ((v, w)) , ∀v, w ∈ V (16)

and moreover A−1 the inverse of A is also self-adjoint in H . Thus, A−1 is a
compact operator in H , self-adjoint.

Let A be an unbounded, strictly positive self-adjoint operator in H . Then one
can employ the spectral theory (see, [8, 10]) and can define the powers As of A,
for s ∈ R. Here we consider the case of the compact injection of V in H .

In the present study, A−1 is considered as a compact self-adjoint operator in
H , and we use the spectral theory of compact self-adjoint operators in a Hilbert
space (see, for example, [9]). There exists a orthonormal complete family of H ,
{wj}j∈N with eigenvectors of A

A−1wj = µjwj , ∀j ∈ N (17)

and the sequence µj is monotonic and tends to 0. Having wj ∈ D(A), ∀j and
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setting λj = µ−1
j , we have

Awj = λjwj , j = 1, ...,0 < λ1 ≤ λ2, ..., λj → ∞ as j → ∞. (18)

The family wj is orthonormal in H , and orthogonal for a in V ,

(wj , wk) = δjk = the Kronecker symbol, a(wj , wk) = ⟨Awj , wk⟩ = λjδjk, ∀j, k.

In particular, if a(u, v) = ((u, v)) is the inner product of V

((wj , wk)) = λjδjk,((wj,wk))∗ = ((A−1wj , wk)) =
1
λj
δjk, ∀j, k.

Here, As is a self-adjoint unbounded operator inH with a dense domainD(As) ⊂
H, for every s > 0. The operator As is injective and strictly positive. The space
D(As) is equipped with the inner product and the norm

(u, v)D(As) = (Asu,Asv),|u|D(As) =
{
(u, u)D(As)

}1/2 (19)

which makes it a Hilbert space and As is an isomorphism from D(As) onto H . In
particular, letting s = 1, we have D(A) and for s = 1/2, D(A1/2) = V.

Defining D(A−s) be the dual of D(As), (s > 0) then As is extended as an
isomorphism from H onto D(A−s). Moreover, D(A−s) can be equipped with the
inner product and the norm in (19) with s is replaced by −s. Finally, one can
denote an increasing family of spaces D(As), s ∈ R,

D(As1) ⊂ D(As2), ∀s1,s2 ∈ R, s1 ≥ s2.

The space is dense in the next one, the injection is continuous, and As1−s2 is an
isomorphism of D(As1) into D(As2), ∀s1, s2 ∈ R, s1 > s2. In the compact self-
adjoint case these operators and spaces can be characterized by making use of the
spectral basis of A. Here, for real and positive s, we have

D(As) =

u ∈ H,

∞∑
j=1

λ2s
j (u,wj)

2 <∞

 , (20)

and for negative s, D(As) is the completion of H for the norm


∞∑
j=1

λ2s
j (u,wj)

2


1/2

. (21)
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The inner product and the norm of D(As) in (11), for s ∈ R, can also be written
as

(u, v)D(As) =

∞∑
j=1

λ2s
j (u,wj)(v, wj), (22)

|u|D(As) =


∞∑
j=1

λ2s
j (u,wj)

2


1/2

, (23)

and for u ∈ D(As) we have:

Asu =

∞∑
j=1

λsj(u,wj)wj . (24)

The detailed theory of the function spaces D(A), V, and H , as well as the op-
erators A and a are given in the references, e.g., [1] and [4].

The solution space of distributions can be expressed in the following form

W (0, T ) =
{
g|g ∈ L2 (0, T ;H1

0
)
, g′ ∈ L2 (0, T ;H) ,

g
′′ ∈ L2

(
0, T ;H−1

0

)}
. (25)

In this article we assume f, g ∈ L∞
(
R+;L2 (Ω)2

)
with

|f |∞ := |f |L∞(R+;L2(Ω)2),

|g|∞ := |g|L∞(R+;L2(Ω)2) .

The definition of the weak solutions for (9) can be stated in the the following
lemma.

Lemma 2.1 ([1]). Consider X be a given Banach space, X
′

is the dual and let v
and g be functions in L1 (a, b;X). The following conditions are equivalent:

(i) v is a.e. equal to the primitive function of g, i.e., ∃ w ∈ X with

v (t) = w +

t∫
0

g (s) ds, for a.e. t ∈ [a, b] . (26)
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(ii) For each test function φ ∈ B (]a, b[) ,

b∫
a

v (t)φ
′
(t) dt = −

b∫
a

g (t)φ (t) dt

(
φ

′
(t) =

dφ

dt

)
. (27)

(iii) For every η ∈ X
′
,

d

dt
⟨v, η⟩ = ⟨g, η⟩ (28)

on ]a, b[ in the scalar distribution sense.
When the conditions (i)-(iii) are satisfied then g is said to be the (X − valued)

distribution derivative of v, and v is a.e. equal to a function from [a, b] into X
which is continuous.

Now we present a discrete Gronwall lemma which will be used in the sequel.

Lemma 2.2 ([2,21]). Let τ > 0, n1, n2, n∗ be positive integers with n1 < n∗, n1+
n2 + 1 ≤ n∗, and γn, ηn, and ϑn are positive sequences with

wn ≤ wn−1 (1 + τηn−1) + τϑn for n = n1, . . . , n∗, (29)

and with upper bounds

∑n
′
+n2

n=n′ τηn ≤ a1 (n1, n∗) ,
∑n

′
+n2

n=n′ τϑn ≤ a2 (n1, n∗) ,∑n
′
+n2

n=n′ τwn ≤ a3 (n1, n∗) (30)

for any n
′

satisfying n1 ≤ n
′ ≤ n∗ − n2, then we have

wn ≤
(
a3 (n1, n∗)

τn2
+ a2 (n1, n∗)

)
exp (a1 (n1, n∗)) (31)

for any n such that n1 + n2 + 1 ≤ n ≤ n∗.

In the next section, we present the weak solutions by establishing the variational
formulation for a nonlinear coupled system of difference equation (9). Some re-
sults on the strong convergence of the sequences will be derived using the theorems
for compactness.
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3 Weak solution of the second order of accuracy difference scheme
generated by A2

In the present section, the theoretical results on the approximate solution of (8) will
be obtained for difference scheme (9) in the weak sense. Applying the variational
approach in the settings of the space of distributions, we will show that system
(9) converges to a weak solution and is unique. Note that, throughout this paper,
Ki, K̃i, ci, di, µi represent generic constants, which may have different values at
different places.

Definition 3.1. The mesh function sets
{
vhk

}
and

{
wh
k

}
are called the approximate

weak solutions of (9) if vhk , w
h
k ∈ V h satisfy the weak formulation of (9). The

family of grid points (10) are used to present Hilbert space

L2h (Ω) = L2h (Ωh) .

The following norm

∥vk∥L2h(Ω) =

 N∑
j=1

∣∣∣vjk∣∣∣2 h
 1

2

(32)

is used in this space.

Now we present the main theorem on the weak solvability of (9). In the follow-
ing theorem solutions uhk and vhk of (9) are proved to be bounded.

Theorem 3.2. Consider a bounded open set Ω ⊂Rn with f, g ∈ L∞
(
R+;L2 (Ω)2

)
and piecewise smooth boundary, v0 ∈ L2 (Ω), v

′
0 ∈ H1

0 (Ω), then the solutions uhk
and vhk of (9) are bounded in the following sense:∣∣∣uhk∣∣∣2 ≤ C,

∣∣∣vhk ∣∣∣2 ≤ C, k = 0, . . . , N, (33)

N−1∑
k=1

∣∣∣uhk+1 − uhk

∣∣∣2
h
≤ C,

N−1∑
k=1

∣∣∣vhk+1 − vhk

∣∣∣2
h
≤ C, (34)

τ 2
N−1∑
k=1

∥∥∥uhk∥∥∥2

h
≤ C

2β1µ1
, τ 2

N−1∑
k=1

∥∥∥vhk∥∥∥2

h
≤ C

2β2µ2
, (35)

with
C =

∣∣∣uh0 ∣∣∣2
h
+
∣∣∣vh0 ∣∣∣2

h
+ d5

∣∣∣uhk−1

∣∣∣2
h
+ d6

∣∣∣vhk−1

∣∣∣2
h
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+d7

T∫
0

|f (s)|2 ds+ d8

T∫
0

|g (s)|2 ds, (36)

and β1, β2, µ1, µ2, d5, d6, d7, and d8 are positive constants.

Proof. We need to prove that
∣∣uhk∣∣h , ∥∥uhk∥∥h are uniformly bounded. For that

purpose, we take the inner product of the equations in system (9) with 2uk+1 and
2vk+1, respectively and obtain

(
uhk+1 − uhk , 2u

h
k+1

)
+
(
uhk−1 − uhk , 2u

h
k+1

)
−β1τ

2(∇2uhk , 2u
h
k+1) +

β1
4 τ

4(∇4uhk+1, 2u
h
k+1)

+τ 2γ1(sin
(
δ11u

h
k + δ12v

h
k

)
, 2uhk+1)

+α11τ
2 [(uhk+1, 2u

h
k+1)− (uhk−1, 2u

h
k+1)]

+ τ 2α12
2 [(vhk+1, 2u

h
k+1)− (vhk−1, 2u

h
k+1)] = (τ 2fk, 2uhk+1),(

vhk+1 − vhk , 2v
h
k+1

)
+
(
vhk−1 − vhk , 2v

h
k+1

)
−β2τ

2(∇2vhk , 2v
h
k+1) +

β1
4 τ

4(∇4vhk+1, 2v
h
k+1)

+τ 2γ2(sin
(
δ21u

h
k + δ22v

h
k

)
, 2vhk+1)

+α21τ
2 [(uhk+1, 2v

h
k+1)− (uhk−1, 2v

h
k+1)]

+α22τ
2 [(vhk+1, 2v

h
k+1)− (vhk−1, 2v

h
k+1)] = (τ 2gk, 2vhk+1).

(37)

Using relations

2 (φ− ψ,φ)h = |φ|2h − |ψ|2h + |φ− ψ|2h , ∀φ,ψ ∈ vhh, (38)

2 (φ− ψ,ψ)h = |φ|2h − |ψ|2h − |φ− ψ|2h , ∀φ,ψ ∈ vhh, (39)

and denoting ∆ = −A, we obtain system

∣∣uhk+1

∣∣2
h
−

∣∣uhk∣∣2h + ∣∣uhk+1 − uhk
∣∣2
h
+
(
uhk−1, 2u

h
k+1

)
−

(
uhk , 2u

h
k+1

)
+β1τ

2(Auhk , 2u
h
k+1) +

β1
4 τ

4(A2uhk+1, 2u
h
k+1)

+τ 2γ1(sin
(
δ11u

h
k + δ12v

h
k

)
, 2uhk+1)

+α11τ
2 [(uhk+1, 2u

h
k+1)− (uhk−1, 2u

h
k+1)]

+ τ 2α12
2 [(vhk+1, 2u

h
k+1)− (vhk−1, 2u

h
k+1)] = (τ 2fk, 2uhk+1),∣∣vhk+1

∣∣2
h
−

∣∣vhk ∣∣2h + ∣∣vhk+1 − vhk
∣∣2
h
+
(
vhk−1, 2v

h
k+1

)
−

(
vhk , 2v

h
k+1

)
+β2τ

2(Avhk , 2v
h
k+1) +

β1
4 τ

4
(
A2vhk+1, 2v

h
k+1

)
+τ 2γ2(sin

(
δ21u

h
k + δ22v

h
k

)
, 2vhk+1)

+α21τ
2 [(uhk+1, 2v

h
k+1)− (uhk−1, 2v

h
k+1)]

+α22τ
2 [(vhk+1, 2v

h
k+1)− (vhk−1, 2v

h
k+1)] = (τ 2gk, 2vhk+1).

(40)
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Replacing the operator A with bilinear form (15), and rewriting the equations of
system (40) separately, we get

∣∣uhk+1

∣∣2
h
−

∣∣uhk∣∣2h + ∣∣uhk+1 − uhk
∣∣2
h
+ 2β1a

((
uhk , u

h
k+1

))
+β1

2 τ
4(A2uhk+1, u

h
k+1) =

(
τ 2fk, 2uhk+1

)
− α12τ

(
vhk+1, u

h
k+1

)
+α12τ

(
vhk−1, u

h
k+1

)
− α11τ

(
uhk+1, u

h
k+1

)
+ (α11τ − 2)

(
uhk−1, u

h
k+1

)
+2(uhk , u

h
k+1)− τ 2γ1

(
sin

(
δ11u

h
k + δ12v

h
k

)
, 2uhk+1

)
,

(41)

and

∣∣vhk+1

∣∣2
h
−

∣∣vhk ∣∣2h + ∣∣vhk+1 − vhk
∣∣2
h
+ 2β2a

((
vhk , v

h
k+1

))
+β2

2 τ
4
(
A2vhk+1, v

h
k+1

)
=

(
τ 2gk, 2vhk+1

)
− α21τ

(
uhk+1, v

h
k+1

)
+α21τ

(
uhk−1, v

h
k+1

)
− α22τ

(
vhk+1, v

h
k+1

)
+ (α22τ − 2)

(
vhk−1, v

h
k+1

)
+2

(
vhk , v

h
k+1

)
− τ 2γ2

(
sin

(
δ21u

h
k + δ22v

h
k

)
, 2vhk+1

)
.

(42)

In this step, since the operator A2 does not have coercivity property, we need to
obtain an estimate for

(
A2uhk+1, u

h
k+1

)
. We will consider the spectral theory that

is presented in the last section above. We use the complete orthonormal family
of H , {wj}j∈N consist of eigenvectors of A for equation (18). The family wj is
orthonormal in H , and orthogonal for a in V . For every s = 2, A2 is a self-adjoint
unbounded operator in H in a dense domain D(A2) ⊂ H . The operator A2 is
injective and strictly positive. The space

D(A2) =

u ∈ H,

∞∑
j=1

λ4
j(u,wj)

2 <∞


is equipped with the inner product and the norm as

(u, v)D(A2) =
∞∑
j=1

λ4
j(u,wj)(v, wj),

|u|D(A2) =


∞∑
j=1

λ4
j(u,wj)

2


1/2

,

and for u ∈ D(A2) we can write

A2u =

∞∑
j=1

λ2
j(u,wj)wj .
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Using these definitions and results of the spectral theory of the operators one can
write 〈

A2uhk+1, u
h
k+1

〉
=

〈
Auhk+1, Au

h
k+1

〉
=

〈
λju

h
k+1, λju

h
k+1

〉
= λ2

ja
((
uhk+1,u

h
k+1

))
, ∀j, k,

and it follows

a
((
uhk+1, u

h
k+1

))
≥ ηi

∥∥∥uhk+1

∥∥∥2
, ηi =

σ

λ2
1
, i = 1, 2,∀uhk+1 ∈ V h. (43)

Here, λ1 is the minimum of the eigenvalues and σ is a positive constant.
Now we obtain a priori estimates that prove the nonnegativity and bounded-

ness of the components of equations (41),(42) of the system (37). We infer from
Poincaré inequality, the existence of a constant ci > 0, such that

ci

∣∣∣uhk∣∣∣
h
≤

∥∥∥uhk∥∥∥
h
, i = 1, . . . , 9, ∀uhk ∈ V h, (44)

(see, for instance, [1]) that will used in the sequel. We obtain the estimate∣∣∣(sin
(
δ11u

h
k + δ12v

h
k

)
, uhk+1

)∣∣∣ ≤ ∣∣∣sin
(
δ11u

h
k + δ12v

h
k

)∣∣∣ ∣∣∣uhk+1

∣∣∣
≤ c1

2

(
M1 |δ11|

(∣∣∣uhk∣∣∣2 + ∣∣∣uhk+1

∣∣∣2)+M1 |δ12|
(∣∣∣vhk ∣∣∣2 + ∣∣∣uhk+1

∣∣∣2)) . (45)

Next we will use the coercivity estimate (14), spectral properties of the opera-
tor A and estimates (44), (45) in the proof. By the given estimates and classical
inequalities such as Cauchy Schwarz inequality, Young’s inequality, and triangle
inequality, and some simple identities together, inequalities

∣∣uhk+1

∣∣2
h
−

∣∣uhk∣∣2h + ∣∣uhk+1 − uhk
∣∣2
h

+2β1µ1τ
2
∥∥uhk∥∥2

+ β1
2 τ

4η1
∥∥uhk+1

∥∥2

≤ 2τ 2 |fk|∞
∣∣uhk+1

∣∣
h
+ 1

2 |α12τ |M1

(∣∣vhk+1

∣∣2
h
+
∣∣uhk+1

∣∣2
h

)
+1

2 |α12τ |M2

(∣∣vhk−1

∣∣2
h
+
∣∣uhk+1

∣∣2
h

)
+ |α11τ |

∣∣uhk+1

∣∣2
h
+ 1

2 |α11τ − 2|M3

(∣∣uhk−1

∣∣2
h
+
∣∣uhk+1

∣∣2
h

)
+M4

(∣∣uhk∣∣2h + ∣∣uhk+1

∣∣2
h

)
+τ 2 |γ1| |c2| |δ11| |M5|

(∣∣uhk∣∣2h + ∣∣uhk+1

∣∣2
h

)
+τ 2 |γ1| |c2| |δ12|M5

(∣∣vhk ∣∣2h + ∣∣uhk+1

∣∣2
h

)

(46)
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and 

∣∣vhk+1

∣∣2
h
−

∣∣vhk ∣∣2h + ∣∣vhk+1 − vhk
∣∣2
h

+2β2µ1τ
2
∥∥vhk∥∥2

+ β2
2 τ

4η2
∥∥vhk+1

∥∥2

≤ 2τ 2 |gk|∞
∣∣vhk+1

∣∣
h
+ 1

2 |α21τ | M̃6

(∣∣uhk+1

∣∣2
h
+
∣∣vhk+1

∣∣2
h

)
+1

2 |α21τ | M̃7

(∣∣uhk−1

∣∣2
h
+
∣∣vhk+1

∣∣2
h

)
+ |α22τ |

∣∣vhk+1

∣∣2
h
+ 1

2 |α22τ − 2| M̃8

(∣∣vhk−1

∣∣2
h
+
∣∣vhk+1

∣∣2
h

)
+M̃9

(∣∣vhk ∣∣2h + ∣∣vhk+1

∣∣2
h

)
+τ 2 |γ2| |c4| |δ21| M̃10

(∣∣uhk∣∣2h + ∣∣vhk+1

∣∣2
h

)
+τ 2 |γ2| |c4| |δ22| M̃10

(∣∣vhk ∣∣2h + ∣∣vhk+1

∣∣2
h

)

(47)

hold. By estimate 44 (see, [1]) inequalities

∣∣uhk+1

∣∣2
h
−

∣∣uhk∣∣2h + ∣∣uhk+1 − uhk
∣∣2
h

+2β1µ1τ
2
∥∥uhk∥∥2

+ β1
2 τ

4η1
∥∥uhk+1

∥∥2

≤ 2τ 2c1 |fk|∞
∥∥uhk+1

∥∥
h
+ 1

2 |α12τ |M1

(∣∣vhk+1

∣∣2
h
+
∣∣uhk+1

∣∣2
h

)
+1

2 |α12τ |M2

(∣∣vhk−1

∣∣2
h
+
∣∣uhk+1

∣∣2
h

)
+ |α11τ |

∣∣uhk+1

∣∣2
h

+1
2 |α11τ − 2|M3

(∣∣uhk−1

∣∣2
h
+
∣∣uhk+1

∣∣2
h

)
+M4

(∣∣uhk∣∣2h + ∣∣uhk+1

∣∣2
h

)
+τ 2 |γ1| |c2| |δ11|M5

(∣∣uhk∣∣2h + ∣∣uhk+1

∣∣2
h

)
+τ 2 |γ1| |c2| |δ12|M5

(∣∣vhk ∣∣2h + ∣∣uhk+1

∣∣2
h

)

(48)

and 

∣∣vhk+1

∣∣2
h
−

∣∣vhk ∣∣2h + ∣∣vhk+1 − vhk
∣∣2
h

+2β2µ2τ
2
∥∥vhk∥∥2

+ β2
2 τ

4η2
∥∥vhk+1

∥∥2

≤ 2τ 2c3 |gk|∞
∥∥vhk+1

∥∥
h
+ 1

2 |α21τ | M̃6

(∣∣uhk+1

∣∣2
h
+
∣∣vhk+1

∣∣2
h

)
+1

2 |α21τ | M̃7

(∣∣uhk−1

∣∣2
h
+
∣∣vhk+1

∣∣2
h

)
+ |α22τ |

∣∣vhk+1

∣∣2
h

+1
2 |α22τ − 2| M̃8

(∣∣vhk−1

∣∣2
h
+
∣∣vhk+1

∣∣2
h

)
+M̃9

(∣∣vhk ∣∣2h + ∣∣vhk+1

∣∣2
h

)
+τ 2 |γ2| |c4| |δ21| M̃10

(∣∣uhk∣∣2h + ∣∣vhk+1

∣∣2
h

)
+τ 2 |γ2| |c4| |δ22| M̃10

(∣∣vhk ∣∣2h + ∣∣vhk+1

∣∣2
h

)

(49)
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hold. Using the Hölder inequality, we get



∣∣uhk+1

∣∣2
h
−

∣∣uhk∣∣2h + ∣∣uhk+1 − uhk
∣∣2
h
+ 2β1µ1τ

2
∥∥uhk∥∥2

+β1
2 τ

4η1
∥∥uhk+1

∥∥2 ≤ τ 4β1η1
2

∥∥uhk+1

∥∥2
h
+

8c2
1

β1η1
|fk|2∞

+1
2 |α12τ |M1

(∣∣vhk+1

∣∣2
h
+
∣∣uhk+1

∣∣2
h

)
+1

2 |α12τ |M2

(∣∣vhk−1

∣∣2
h
+
∣∣uhk+1

∣∣2
h

)
+ |α11τ |

∣∣uhk+1

∣∣2
h
+ 1

2 |α11τ − 2|M3

×
(∣∣uhk−1

∣∣2
h
+
∣∣uhk+1

∣∣2
h

)
+M4

(∣∣uhk∣∣2h + ∣∣uhk+1

∣∣2
h

)
+τ 2 |γ1| |c2| |δ11|M5

(∣∣uhk∣∣2h + ∣∣uhk+1

∣∣2
h

)
+τ 2 |γ1| |c2| |δ12|M5

(∣∣vhk ∣∣2h + ∣∣uhk+1

∣∣2
h

)

(50)

and 

∣∣vhk+1

∣∣2
h
−

∣∣vhk ∣∣2h + ∣∣vhk+1 − vhk
∣∣2
h
+ 2β2µ2τ

2
∥∥vhk∥∥2

+β2
2 τ

4η2
∥∥vhk+1

∥∥2 ≤ τ 4β2η2
2

∥∥vhk+1

∥∥2
h
+

8c2
3

β2η2
|gk|2∞

+1
2 |α21τ | M̃6

(∣∣uhk+1

∣∣2
h
+
∣∣vhk+1

∣∣2
h

)
+1

2 |α21τ | M̃7

(∣∣uhk−1

∣∣2
h
+
∣∣vhk+1

∣∣2
h

)
+ |α22τ |

∣∣vhk+1

∣∣2
h

+1
2 |α22τ − 2| M̃8

(∣∣vhk−1

∣∣2
h
+
∣∣vhk+1

∣∣2
h

)
+M̃9

(∣∣vhk ∣∣2h + ∣∣vhk+1

∣∣2
h

)
+τ 2 |γ2| |c4| |δ21| M̃10

(∣∣uhk∣∣2h + ∣∣vhk+1

∣∣2
h

)
+τ 2 |γ2| |c4| |δ22| M̃10

(∣∣vhk ∣∣2h + ∣∣vhk+1

∣∣2
h

)
.

(51)

Collecting the like terms of equations (50), (51) respectively, we get



∣∣uhk+1

∣∣2
h
−

∣∣uhk∣∣2h + ∣∣uhk+1 − uhk
∣∣2
h

+2β1µ1τ
2
∥∥uhk∥∥2 ≤ 8c2

1
β1η1

|fk|2∞ +
( 1

2 |α12τ |M1

+1
2 |α12τ |M2 + |α11τ |+ 1

2 |α11τ − 2|M3 +M4

+τ 2 |γ1| |c2| |δ11|M5 + τ 2 |γ1| |c2| |δ12|M5
) ∣∣uhk+1

∣∣2
h

+1
2 |α11τ − 2|M3

∣∣uhk−1

∣∣2
h

+
(
M4 + τ 2 |γ1| |c2| |δ11|M5

) ∣∣uhk∣∣2h
+1

2 |α12τ |M1
∣∣vhk+1

∣∣2
h
+ 1

2 |α12τ |M2
∣∣vhk−1

∣∣2
h

+τ 2 |γ1| |c2| |δ12|M5
∣∣vhk ∣∣2h

(52)
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and 

∣∣vhk+1

∣∣2
h
−

∣∣vhk ∣∣2h + ∣∣vhk+1 − vhk
∣∣2
h

+2β2µ2τ
2
∥∥vhk∥∥2 ≤ 8c2

3
β2η2

|gk|2∞ +
(

1
2 |α21τ | M̃6

+1
2 |α21τ | M̃7 + |α22τ |+ 1

2 |α22τ − 2| M̃8 + M̃9

+τ 2 |γ2| |c4| |δ21| M̃10 + τ 2 |γ2| |c4| |δ22| M̃10

) ∣∣vhk+1

∣∣2
h

+1
2 |α22τ − 2| M̃8

∣∣vhk−1

∣∣2
h

+
(
M̃9 + τ 2 |γ2| |c4| |δ22| M̃10

) ∣∣vhk ∣∣2h
+1

2 |α21τ | M̃6
∣∣uhk+1

∣∣2
h
+ 1

2 |α21τ | M̃7
∣∣uhk−1

∣∣2
h

+τ 2 |γ2| |c4| |δ21| M̃10
∣∣uhk∣∣2h .

(53)

Denoting the coefficients

K1 = 1
2 |α12τ |M1 +

1
2 |α12τ |M2 + |α11τ |+ 1

2 |α11τ − 2|M3 +M4

+τ 2 |γ1| |c2| |δ11|M5 + τ 2 |γ1| |c2| |δ12|M5

K2 =
1
2
|α11τ − 2|M3,K3 =M4 + τ 2 |γ1| |c2| |δ11|M5

K4 =
1
2
|α12τ |M1,K5 =

1
2
|α12τ |M2

K6 = τ 2 |γ1| |c2| |δ12|M5

for equation (52), and

K̃1 = 1
2 |α21τ | M̃6 +

1
2 |α21τ | M̃7 + |α22τ |+ 1

2 |α22τ − 2| M̃8

+M̃9 + τ 2 |γ2| |c4| |δ21| M̃10 + τ 2 |γ2| |c4| |δ22| M̃10

K̃2 =
1
2
|α22τ − 2| M̃8, K̃3 = M̃9 + τ 2 |γ2| |c4| |δ22| M̃10

K̃4 =
1
2
|α21τ | M̃6, K̃5 =

1
2
|α21τ | M̃7

K̃6 = τ 2 |γ2| |c4| |δ21| M̃10

for equation (53), we get
∣∣uhk+1

∣∣2
h
−

∣∣uhk∣∣2h + ∣∣uhk+1 − uhk
∣∣2
h
+ 2β1µ1τ

2
∥∥uhk∥∥2

≤ 8c2
1

β1η1
|fk|2∞ +K1

∣∣uhk+1

∣∣2
h
+K2

∣∣uhk−1

∣∣2
h
+K3

∣∣uhk∣∣2h
+K4

∣∣vhk+1

∣∣2
h
+K5

∣∣vhk−1

∣∣2
h
+K6

∣∣vhk ∣∣2h
(54)
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and 
∣∣vhk+1

∣∣2
h
−

∣∣vhk ∣∣2h + ∣∣vhk+1 − vhk
∣∣2
h
+ 2β2µ2τ

2
∥∥vhk∥∥2

≤ 8c2
3

β2η2
|gk|2∞ + K̃1

∣∣vhk+1

∣∣2
h
+ K̃2

∣∣vhk−1

∣∣2
h
+ K̃3

∣∣vhk ∣∣2h
+K̃4

∣∣uhk+1

∣∣2
h
+ K̃5

∣∣uhk−1

∣∣2
h
+ K̃6

∣∣uhk∣∣2h .
(55)

Taking the sum of (54) and (55), and using the inequalities presented so far, we get

∣∣uhk+1

∣∣2
h
−

∣∣uhk∣∣2h + ∣∣uhk+1 − uhk
∣∣2
h
+
∣∣vhk+1

∣∣2
h
−

∣∣vhk ∣∣2h + ∣∣vhk+1 − vhk
∣∣2
h

+2β1µ1τ
2
∥∥uhk∥∥2

+ 2β2µ2τ
2
∥∥vhk∥∥2

≤ 8c2
1

β1η1
|fk|2∞ +

8c2
3

β2η2
|gk|2∞ +

(
K1 + K̃4

) ∣∣uhk+1

∣∣2
h

+
(
K4 + K̃1

) ∣∣vhk+1

∣∣2
h
+
(
K2 + K̃5

) ∣∣uhk−1

∣∣2
h
+
(
K5 + K̃2

) ∣∣vhk−1

∣∣2
h

+
(
K3 + K̃6

) ∣∣uhk∣∣2h + (
K6 + K̃3

) ∣∣vhk ∣∣2h .
(56)

By dropping some positive terms we rewrite the system as follows

∣∣uhk+1

∣∣2
h
−

∣∣uhk∣∣2h + ∣∣vhk+1

∣∣2
h
−

∣∣vhk ∣∣2h ≤ 8c2
1

β1η1
|fk|2∞

+
8c2

3
β2η2

|gk|2∞ +
(
K1 + K̃4

) ∣∣uhk+1

∣∣2
h
+
(
K3 + K̃6 − 2β1µ1τ

2
) ∣∣uhk∣∣2h

+
(
K2 + K̃5

) ∣∣uhk−1

∣∣2
h
+
(
K4 + K̃1

) ∣∣vhk+1

∣∣2
h

+
(
K6 + K̃3 − 2β2µ2τ

2
) ∣∣vhk ∣∣2h + (

K5 + K̃2

) ∣∣vhk−1

∣∣2
h
.

(57)

We apply Gronwall lemma for (57) by letting
∣∣uhk+1

∣∣2
h
= ξn

(
and ξn =

∣∣vhk+1

∣∣2
h

)
.

The assumptions of Lemma 2.2 are satisfied since there exist upper bounds such
that (

K3 + K̃6 − 2β1µ1τ
2
)
≤ a1 (n1, n∗) ,

(
K2 + K̃5

)
≤ a2 (n1, n∗) ,(

K1 + K̃4

)
≤ a3 (n1, n∗) ,

(
K6 + K̃3 − 2β2µ2τ

2
)
≤ ã1 (n1, n∗) ,(

K5 + K̃2

)
≤ ã2 (n1, n∗) ,

(
K4 + K̃1

)
≤ ã3 (n1, n∗) .

Thus by the Gronwall lemma the following inequality∣∣∣uhk+1

∣∣∣2
h
+
∣∣∣vhk+1

∣∣∣2
h
≤

(
a3 (n1, n∗)

τn2
+ a2 (n1, n∗)

)
exp (a1 (n1, n∗))

+

(
ã3 (n1, n∗)

τn2
+ ã2 (n1, n∗)

)
exp (ã1 (n1, n∗)) (58)
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holds. Next, adding inequality (56), from k = 0, . . . , N − 1, we get

∣∣uhN ∣∣2
h
+
∣∣vhN ∣∣2

h
+

N−1∑
k=1

∣∣uhk+1 − uhk
∣∣2
h
+

N−1∑
k=1

∣∣vhk+1 − vhk
∣∣2
h

+2β1µ1τ
2
N−1∑
k=1

∥∥uhk∥∥2
h
+ 2β2µ2τ

2
N−1∑
k=1

∥∥vhk∥∥2

≤
∣∣uh0 ∣∣2h + ∣∣vh0 ∣∣2h + 8c2

1
β1η1

N−1∑
k=1

|fk|2∞ +
8c2

3
β2η2

N−1∑
k=1

|gk|2∞

+
(
K1 + K̃4

)N−1∑
k=1

∣∣uhk+1

∣∣2
h
+
(
K4 + K̃1

)N−1∑
k=1

∣∣vhk+1

∣∣2
h

+
(
K2 + K̃5

)N−1∑
k=1

∣∣uhk−1

∣∣2
h
+
(
K5 + K̃2

)N−1∑
k=1

∣∣vhk−1

∣∣2
h

+
(
K3 + K̃6

)N−1∑
k=1

∣∣uhk∣∣2h + (
K6 + K̃3

)N−1∑
k=1

∣∣vhk ∣∣2h .

(59)

Using estimate (44) the following inequality

∣∣uhN ∣∣2
h
+
∣∣vhN ∣∣2

h
+

N−1∑
k=1

∣∣uhk+1 − uhk
∣∣2
h
+

N−1∑
k=1

∣∣vhk+1 − vhk
∣∣2
h

+d1

N−1∑
k=1

∥∥uhk∥∥2
h
+ d2

N−1∑
k=1

∥∥vhk∥∥2
+ d3

∣∣uhk+1

∣∣2
h
+ d4

∣∣vhk+1

∣∣2
h

≤
∣∣uh0 ∣∣2h + ∣∣vh0 ∣∣2h + d5

∣∣uhk−1

∣∣2
h
+ d6

∣∣vhk−1

∣∣2
h

+τ 2d7
N−1∑
k=1

|fk|2∞ + τ 2d8

N−1∑
k=1

|gk|2∞ .

(60)

is obtained. Here,

d1 =
(

2β1τ
2µ1 − c5

(
K3 + K̃6

))
, d2 =

(
2β2τ

2µ2 − c6

(
K6 + K̃3

))
,

d3 = −
(
K1 + K̃4

)
, d4 = −

(
K4 + K̃1

)
d5 =

(
K2 + K̃5

)
,

d6 =
(
K5 + K̃2

)
, d7 =

8c2
1

β1η1
, d8 =

8c2
3

β2η2
.

We refer to [1] for the useful inequality

N−1∑
k=1

|fk|2∞ ≤
T∫

0

|f (s)|2 ds. (61)

The initial uh0 is the orthogonal projection of uh0 onto V h, in L2 (Ω) . By this we
have (see, [1]) ∣∣∣uh0 ∣∣∣ ≤ |u0| , ∀h. (62)
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Similar is true for vh0 . Making use of estimates (61) and (62) it follows that the
right hand side of (9) is bounded by

C = |u0|2 + |v0|2 +d5

∣∣∣uhk−1

∣∣∣2
h
+d6

∣∣∣vhk−1

∣∣∣2
h
+d7

T∫
0

|f (s)|2 ds+d8

T∫
0

|g (s)|2 ds.

This proves (34) and (35). Next adding the inequalities (56) for k = 0, . . . r − 1,
dropping some positive terms, we get∣∣∣uhr ∣∣∣2

h
+
∣∣∣vhr ∣∣∣2

h
≤

∣∣∣uh0 ∣∣∣2 + ∣∣∣vh0 ∣∣∣2 + τ 2d7

r−1∑
k=1

|fk|2∞ + τ 2d8

r−1∑
k=1

|gk|2∞ ≤ C.

Using this result and estimate (58) we prove (33). Hence, Theorem 3.2 is proved.
Next theorem states that the set of mesh functions

{
uhk

}
and

{
vhk

}
are compact

in L2h (Ω) topology.

Theorem 3.3. Let the hypotheses of Theorem 3.2 are satisfied. Then there exist
subsequences {

uhkm

}
⊂

{
uhk

}
and

{
vhkm

}
⊂

{
vhk

}
which converge in Vh to bounded measurable functions uh and vh, respectively.
Moreover, the limit functions uh and vh are unique weak solutions satisfying (9).

Proof. Estimates (33), (34),(35), and Discrete Gronwall Lemma (see, [21–23])
imply that

{uhk} and {vhk} are bounded in L∞(0, T ;V ).

Then, by the Rellich Theorem [4] there exists a subsequence wkm = [ukm , vkm ]
T

of wk = [uk, vk]
T and w̃k∈L∞(0, T ;V) such that

w̃k∈L∞(0, T ;V) ⊂ L2(0, T ;V

and

wkm → w̃k weak star in L∞(0, T ;V and weakly in L2 (0, T ;V) . (63)

By the Aubin Compactness theorem [16], the above convergence results imply

wkm → w̃k strongly in L2 (0, T ;H) (64)

and by (64),
sin δwkm → sin δw̃k strongly in L2(0, T ;H).

which proves the existence of w̃k a.e. in H and w̃0 = w0. Uniqueness follows
from the results of Theorem 3.2 and convergence of difference scheme (9). Hence,
Theorem 3.3 is proved.
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4 Numerical Analysis

In this section, we verify the theoretical statements that are proved above by nu-
merical experiments. A unified numerical method based on the fixed point itera-
tion and finite difference schemes will be used. We aid the nonlinearity using the
fixed point method. Fixed-point iterations are utilized to overcome the difficul-
ties arising from the nonlinear source term. We introduce a composite numerical
method to obtain accurate results for the solution of a system of PDEs with initial
and boundary conditions for the coupled sine-Gordon equations. We consider the
function

w(t, x) = {u(t, x), v(t, x)} ,

u(t, x) = cos t sinπx, v(t, x) = cos 2t sinπx

being the solution and using this function we formulate a mixed boundary value
problem that leads to this solution. We consider the following problem for the
system of sine-Gordon equations



utt + ut − uxx + u =
(
π2 cos t− sin t

)
sinπx

− sin(cos t sinπx− cos 2t sinπx) + sin(u− v),

0 < t < 1, 0 < x < 1,
vtt + vt − vxx + v =

((
π2 − 3

)
cos 2t− 2 sin 2t

)
sinπx

− sin (cos t sinπx− cos 2t sinπx) + sin(u− v),

0 < t < 1, 0 < x < 1,
u(0, x) = sinπx, ut(0, x) = 0, 0 ≤ x ≤ 1,
v(0, x) = sinπx, vt(0, x) = 0, 0 ≤ x ≤ 1,
u(t, 0) = u(t, 1) = 0, 0 ≤ t ≤ 1,
v(t, 0) = v(t, 1) = 0, 0 ≤ t ≤ 1.

(65)

The modified Gauss elimination method is used to solve the difference scheme
(66) corresponding to the approximate solution of (65). The family of grid points
is

Ωh = [0, 1]τ × [0, 1]h = {(tk, xn) : tk = kτ, 0 ≤ k ≤ N,

Nτ = 1, xn = nh, 0 ≤ n ≤M,Mh = 1}
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is used for the difference scheme

puk+1
n −2puk

n+pu
k−1
n

τ 2 + puk+1
n −pu

k−1
n

2τ − puk
n+1−2puk

n+puk
n−1

h2 +p u
k
n

+ τ 2

4
pu

k+1
n+2−4puk+1

n+1+6puk+1
n −4puk+1

n−1+pu
k+1
n−2

h4 = sin(pukn −p v
k
n)

+
(
π2 cos tk − sin tk

)
sinπx

− sin (cos tk sinπxn − cos 2tk sinπxn) ,
pvk+1

n −2pvkn+pv
k−1
n

τ 2 + pvk+1
n −pv

k−1
n

2τ − pvkn+1−2puk
n+puk

n−1
h2 +p v

k
n

+ τ 2

4
pv

k+1
n+2−4pvk+1

n+1+6pvk+1
n −4pvk+1

n−1+pv
k+1
n−2

h4 = sin(pukn −p v
k
n)

+
((
π2 − 3

)
cos 2tk − 2 sin 2tk

)
sin (πxn)

− sin (cos tk sinπxn − cos 2tk sinπxn) ,
tk = kτ, 1 ≤ k ≤ N − 1, Nτ = 1, xn = nh,

1 ≤ n ≤M − 1,Mh = 1,

pu
0
n = sin(πxn), 1 ≤ n ≤M − 1,

(2τ)−1
(
−3pu0

n (xn) + 4pu1
n (xn)−p u

2
n (xn)

)
= 0,

1 ≤ n ≤M − 1,p v0
n = sin(πxn), 1 ≤ n ≤M − 1,

(2τ)−1
(
−3pv0

n (xn) + 4pv1
n (xn)−p v

2
n (xn)

)
= 0,

1 ≤ n ≤M − 1,

pu
k
0 =p u

k
M = 0,p vk0 =p v

k
M = 0, 0 ≤ k ≤ N.

(66)

For different N,M values we present the errors, iteration numbers, and related
CPU times in the following tables. MATLAB R2021b software package, by a PC
System of 64 bit, Core i5 CPU, 1.80 GHz, 8 GB of RAM is used for numerical
experiments. We use the following formula

max
u,v

 max
1≤k≤N−1
1≤n≤M−1

∣∣∣u (tk, xn)− ukn

∣∣∣ , max
1≤k≤N−1
1≤n≤M−1

∣∣∣v (tk, xn)− vkn

∣∣∣


to compute errors. The computation is carried our for m = 1, 2, ..., p, which p
depends on a stopping criterion also called error tolerance ε such that

|pun −p−1 un| < ε and |pvn −p−1 vn| < ε.

Here m index represents the number of fixed point iterations. We denote the exact
solution of problem (65) by w (tk, xn) = [u (tk, xn) , v (tk, xn)]

T and the approx-
imate solution by wk

n =
[
ukn, v

k
n

]T . The results of numerical implementations are
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presented in tables below.

Table 1. Results for problem (66)

N =M Error of w m CPU times

20 0.0041 9 0.443

40 0.0011 10 1.202

80 0.00028 10 5.382

160 0.000071 11 69.039

Table 1 gives the errors for the solution of (66), with a terminating criteria ε =
10−15. The initials

0u
k
n =

[
ri,j

]N−1
i,j=1, ri,j ∼ Uniform(0, 1), (67)

0v
k
n = IN+1, where IN+1is the identity matrix (68)

where (67) is random matrix and (68) is a identity matrix are used.

Table 2. Results for problem (66)

N =M Error of w m CPU times

20 0.0041 10 0.504

40 0.0011 12 1.777

80 0.00028 12 6.425

160 0.000071 13 59.190

Table 2 presents the errors for the solution of (66), with terminating criteria ε =
10−20. Here, the initials are

0u
k
n =

[
ri,j

]N−1
i,j=1, ri,j ∼ Uniform(0, 1),

0v
k
n = 0N+1, (69)

where (69) is the zero matrix.

Table 3. Results for problem (66)

N =M Error of w m CPU times

20 0.0041 9 0.485

40 0.0011 10 1.223

80 0.00028 11 5.899

160 0.000071 12 49.307
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Table 3 gives the errors for the solution of (66), with ε = 10−20. In the iteration,
the initials are taken as the identity matrices of the form

0u
k
n =0 v

k
n = IN+1. (70)

Difference scheme (66) is used together with fixed point iteration to obtain nu-
merical solutions. Difference scheme (66) converges for different N =M values,
initial vectors 0v

k
n, 0w

k
n, termination criteria ε in different iteration numbers m.

When reaching the maximum difference value at specific grid points of two suc-
cessive results yields less than ε, the iterative process stops. Note that when initials
0v

k
n, 0w

k
n in (67), (68), (69), (70), and ε are varied, iteration numbers, and CPU

times increase until the error becomes very small for some N =M values.

5 Conclusion

In this work existence and uniqueness of weak solutions for the coupled system
of finite difference schemes corresponding to the coupled sine-Gordon equations
are studied. The existence and uniqueness of the solutions are proved using the
variational methods. A numerical method that uses the second order of accu-
racy unconditionally stable difference scheme (9) with the fixed point iteration is
presented. The theoretical statements are verified by numerical experiments with
Matlab implementations.
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