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Abstract. The paper considers a special type of the Lotka-Volterra operator operating in a
four-dimensional simplex. The tournament corresponding to this operator has four cyclic
triples. All kinds of fixed point cards are built for it. It is proved which types of cards exist
for Lotka-Volterra operators in the general position, and which cannot be. The paper also
proposes a new approach to constructing an oriented card of fixed points.
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1 Introduction

Starting the work, we need to note that in the works of R.N. Ganikhodjaev [1]-[2]
a special type of quadratic Lotka-Volterra operators was introduced, having the
form

V : x′k = xk

(
1 +

m∑
i=1

akixi

)
, k = 1,m. (1)

This operator preserves a finite-dimensional simplex

Sm−1 =

{
x = (x1, . . . , xm) :

m∑
i=1

xi = 1, xi ≥ 0

}
⊂ Rm.

It should be noted that the operator is completely determined by the skew-symmetric
matrix A = (aki). The elements of the matrix A satisfy the conditions aki = −aik,
|aki| ≤ 1, k, i = 1,m. We owe the connections of these mappings with elements
of graph theory, such as tournaments, to the works [6,7]. Partially oriented graphs
and their relation to operators of this type are given in [3, 4]. These operators are
relevant for research, since they can rightfully act as discrete models of airborne
viral diseases, in the case when partially oriented graphs correspond to operators
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[6–8]. In the case when they are in a general position and in the card of fixed
points we have a strong triple (Hamiltonian cycle) and a transitive triple, then they
describe an ecological model, that is, a model of the cycle of biogens, in particular
carbon and phosphorus [11]. This paper is a continuation of the work [9], i.e. in it
we give a solution to the problem posed in [10]. At the same time, in this article
we propose a new method for constructing a fixed point card for the Lotka-Volterra
operator, according to the signs of the principal minors of the fourth order.

2 Preliminaries

We start the article by characterizing the skew-symmetric matrix, since the opera-
tors which we consider here are completely based on and determined by matrices
of this type.

Let A be a real matrix satisfying the relation

A = −AT ,

where AT is the transposed matrix. Then we call this matrix skew-symmetric [5].
It follows from the definition that a skew-symmetric matrix can only be square,

and its elements must satisfy the relation:

aki = −aik by {k, i} ⊂ {1, . . . ,m}.

It follows from this condition that all elements of the main diagonal of the skew-
symmetric matrix must be equal to zero, and the matrix itself has the form:

0 a12 a13 . . . a1m

−a12 0 a23 . . . a2m

−a13 −a23 0 . . . a3m

. . . . . . . . . . . . . . .

−a1m −a2m −a3m . . . 0


. (2)

The determinant of an odd-order skew-symmetric matrix is always zero.
Based on the definition of a skew-symmetric matrix, we have:

A = −AT =⇒ det(A) = det(−AT ) = (−1)ndet(A).

If m is odd, the last equality implies that det(A) = 0.
Now, let m be even. Then the determinant of a skew-symmetric matrix of even

order m is the square of a homogeneous polynomial of degree m
2 with respect to

its elements [11].
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Definition 2.1. A skew-symmetric matrix A = (aki) is called a general position
matrix if all principal minors of even order are nonzero.

For example, for m = 2 we find∣∣∣∣∣ 0 a12

−a12 0

∣∣∣∣∣ = a2
12 ̸= 0,

and for m = 4

△ =

∣∣∣∣∣∣∣∣∣∣
0 a12 a13 a14

−a12 0 a23 a24

−a13 −a23 0 a34

−a14 −a24 −a34 0

∣∣∣∣∣∣∣∣∣∣
,

so

△ = (a12a34 − a13a24 + a14a23)
2 = (a12a34 + a13a24 + a14a23)

2 ̸= 0.

Since aki = −aik and aki ̸= 0 for k ̸= i, we connect skew-symmetric matrices
with elements of graph theory. We can match tournaments to a skew-symmetric
matrix, the elements of which satisfy such conditions. As we recalled above, such
matrices are in a general position. To do this, we give definitions from classical
graph theory [12, 13].

Definition 2.2 ([12]). A graph G is a finite nonempty set W containing p vertices
and a given set E consisting of q unordered pairs of different vertices from W .

Each pair x = {u, v} of vertices in E is said to be an edge of the graph G, and
this notation means that x connects u and v. We write x = uv, and this notation
means that u and v are adjacent vertices of the edge x. The vertex u and the edge
x, as well as v and x are incident.

If two different edges x and y are incident to the same vertex, then they are
called adjacent.

A graph with p vertices and q edges is called the (p, q)-graph.
It is clear from the definitions that a graph cannot have loops, that is, edges

connecting vertices with themselves.

Definition 2.3 ([8]). An oriented graph or digraph D is a finite nonempty set con-
taining vertices and a given set E of ordered pairs of different vertices.

The elements of E of an oriented graph are called oriented edges or arcs.
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Definition 2.4. Pairs of vertices that are connected by more than one edge are
called multiple pairs.

There are no loops or multiple arcs in a digraph.

Definition 2.5. A directed graph is a digraph in which no pair of vertices is con-
nected by a symmetric pair of arcs.

The definition implies that every orientation of a graph generates a directed
graph.

In the classical definition of the tournament [6]-[7] a round-robin tournament is
considered, in which a set of players leading the game is given.

The rules of the game are that any two players meet each other only once and as
a result of the game, the outcome of the − draw is prohibited. This means that the
tournament is a digraph in which each pair of vertices is connected by only one
arc.

We will associate the concepts we have given from classical graph theory with
the considered skew-symmetric matrix (2).

Let A = (aki) be a skew-symmetric matrix of general position (2). Suppose
that aki ̸= 0 for k ̸= i. Taking m points on the plane, we number them with
the numbers 1, 2, . . . ,m, and then connect the point k to the point i with an arrow
directed from k to i if aki < 0, and back if aki > 0. Let’s call the graph constructed
in this way a tournament corresponding to the skew-symmetric matrix A = (aki)
and denote it by Tm, i.e. a digraph is called a tournament, if for any two distinct
vertices i and k, one and only one of the ordered pairs (i, k) or (k, i) is an edge of
the digraph.

In the case when the principal minors of even order are zero, we get a degenerate
skew-symmetric matrix. This case is possible only if some coefficients of the
skew-symmetric matrix are zero, i.e. aki = 0.

For degenerate matrices, we introduce the concept of a partially-oriented graph
[14]. By the name, it can be understood that a partially-oriented graph is a graph
that contains both oriented and undirected edges.

An undirected graph is a graph that has no oriented edges, and, generally speak-
ing, it can be included in the composition of partially-oriented graphs [15].

3 Main results

Let us consider a graph shown in Figure 1. We represent the graphs based on John
W. Moon’s monograph [6].
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Figure 1. The tournament T5 corresponding to the operator V and the matrix A (a
representation of this type is given in the monograph [6]).

The operator corresponding to this tournament T5 has the form

V :



x′1 = x1(1 − a12x2 − a13x3 − a14x4 + a15x5)

x′2 = x2(1 + a12x1 − a23x3 − a24x4 + a25x5)

x′3 = x3(1 + a13x1 + a23x2 − a34x4 − a35x5)

x′4 = x4(1 + a14x1 + a24x2 + a34x3 − a45x5)

x′5 = x5(1 − a15x1 − a25x2 + a35x3 + a45x4),

(3)

and the skew-symmetric matrix looks like this:

A =



0 −a12 −a13 −a14 a15

a12 0 −a23 −a24 a25

a13 a23 0 −a34 −a35

a14 a24 a34 0 −a45

−a15 −a25 a35 a45 0


.

For the V operator of the general position, it is necessary that the principal
minors of the skew-symmetric matrix A be nonzero

A11
1 =


0 −a23 −a24 a25

a23 0 −a34 −a35

a24 a34 0 −a45

−a25 a35 a45 0

 ,
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the determinant of the skew-symmetric matrix A11
1 is equal to∣∣∣∣∣∣∣∣∣∣∣

0 −a23 −a24 a25

a23 0 −a34 −a35

a24 a34 0 −a45

−a25 a35 a45 0

∣∣∣∣∣∣∣∣∣∣∣
= (a24a35 − a23a45 + a25a34)

2 ̸= 0.

Similarly, we calculate the remaining determinants. The expressions in parenthe-
ses are denoted as follows:

∆
11
1 = a24a35 − a23a45 + a25a34, ∆

22
2 = a14a35 − a13a45 + a15a34,

∆
33
3 = a14a25 − a15a24 + a12a45, ∆

44
4 = a12a35 − a15a23 + a13a25, (4)

∆
55
5 = a12a34 − a13a24 + a14a23.

Since A is in general position, ∆ii
i ̸= 0, i = 1, 5.

In system (3) there are four cyclic triples, i.e. the simplex has four strong sub
tournaments. The concept of strong sub tournaments was given in the works [9]-
[11]. The two-dimensional faces of S4 corresponding to strong sub tournaments
are 135, 145, 235 and 245. Since they are strong, i.e. they make up a cyclic triple,
then according to [11], they have one interior fixed point each:

M135

(
a35

a13 + a15 + a35
, 0,

a15

a13 + a15 + a35
, 0,

a13

a13 + a15 + a35

)
,

M145

(
a45

a14 + a15 + a45
, 0, 0,

a15

a14 + a15 + a45
,

a14

a14 + a15 + a45

)
,

M235

(
0,

a35

a23 + a25 + a35
,

a25

a23 + a25 + a35
, 0,

a23

a23 + a25 + a35

)
,

M245

(
0,

a45

a24 + a25 + a45
, 0,

a25

a24 + a25 + a45
,

a24

a24 + a25 + a45

)
,

where all coefficients are positive. Recall the following works [9]-[11].
Let A be a skew-symmetric matrix. Then the sets

P = {x ∈ Sm−1 : Ax ≥ 0} and Q = {x ∈ Sm−1 : Ax ≤ 0} (5)

are nonempty convex polyhedra [2].
Recall the definition of a card of fixed points for mappings in a general position.
Let I = {1, . . . ,m}, α ⊂ I , and X = {x(α) : α ⊂ I} be the set of fixed

points. We say that the fixed points x(α) and x(β) form a pair (P,Q) if there
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exists a face Γγ of the simplex, such that γ = α∪ β and the following inequalities
hold

Aγx(α) ≥ 0, Aγx(β) ≤ 0.

Here Aγ is the narrowing of the skew-symmetric matrix A at the face Γγ of the
simplex Sm−1.

Now the fixed points of x(α) and x(β) we draw on the plane: if they form
a (P,Q) pair, then we connect them with an arc from x(α) to x(β). The graph
constructed in this way is called a card of fixed points. The card of fixed points for
the operator V is denoted by GV .

In the case when all principal minors of the second and fourth order are nonzero,
we obtain a skew-symmetric matrix A = (aki), k ̸= i in the general position, then
the fixed points card GV have the form shown in Figure 2.

Figure 2. General view of the card of fixed points of the operator V .

Figure 2 shows a card with non-directional edges. The directions on the edges of
the card (graph) are set according to the signs of the principal minors of the fourth
order ∆ii

i ̸= 0, i = 1, 5, given in (4). From the graph theory [7] we know that
the number oriented graphs is 24 = 16. Of these, the number of non-isomorphic
digraphs is equal to 4. These oriented graphs are shown in the Figure 3.

Figure 3. All kinds of fixed point cards for the operator V .
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Theorem 3.1. If the skew-symmetric matrix is in general position, then the fixed
point card for the operator V has following the form

(i) it has the form a), if ∆11
1 ,∆44

4 < 0

(ii) it has the form b), if ∆11
1 ,∆33

3 ,∆44
4 < 0

(iii) it has the form c), if ∆33
3 ,∆44

4 < 0.

Proof. Solving Ax = 0, we get the following expressions:

−∆
44
4 x2 − ∆

22
2 x4,

−∆
33
3 x2 + ∆

22
2 x3, (6)

∆
44
4 x1 − ∆

11
1 x4,

∆
11
1 x3 + ∆

33
3 x1.

If ∆11
1 ,∆44

4 < 0, then (6) has the form:

∆
44
4 x2 − ∆

22
2 x4,

−∆
33
3 x2 + ∆

22
2 x3, (7)

−∆
44
4 x1 + ∆

11
1 x4,

−∆
11
1 x3 + ∆

33
3 x1.

Using these expressions, we determine the directions on the edges of the fixed
point cards:
– let us set γ = {1, 2, 3, 5} and X = {x(α), x(β) : α, β ⊂ γ} be the set of fixed
points, where α = 135, β = 235, i.e. γ = α∪ β and x(α) = 135 and x(β) = 235
fixed points belonging to strong triples 135, 235. The edge connecting these fixed
points is denoted by Γγ . The direction on the edge Γγ defines the sign before the
expression ∆44

4 .
Analyzing expression (7), we obtain the following:

– in the first expression, there is a positive sign before ∆44
4 , and in the third expres-

sion, the negative sign before ∆44
4 . This means that we set the direction from the

second vertex to the first, i.e. 2 → 1. More accurately, we set the direction from a
fixed point belonging to face 235 to a fixed point 135.

Now, as the set γ, let’s take the set γ = {1, 3, 4, 5}. Here x(α) = 135 and
x(β) = 145. The direction of the edge Γγ here defines the sign before ∆22

2 . Con-
sider the first expression in (7), where there is a negative sign before ∆22

2 , and in
the second expression (6) before ∆22

2 we see a positive sign. This means that we
set the direction from 135 to 145. We define the remaining directions on the edges
in the same way and as a result we get the cards of fixed points shown in Figure 3,
cases a), b), c).
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For the case d), shown in Figure 3, we have obtained the following theorem.

Theorem 3.2. If the skew-symmetric matrix is in general position, then the card of
fixed points of the operator V cannot be represented as d).

Proof. The proof of this theorem follows from Theorem 3.1. If the skew-symmetric
matrix is in general position, then according to Theorem 3.1, the sets P and Q
consist of a single fixed point. But as you can see from Figure 3, the case of d)
each of the sets P and Q consists of two points, that is, P = {145, 235} and
Q = {135, 245}. This contradicts the condition of Theorem 3.1.

4 Conclusion

As we indicated above, earlier in [3, 10, 11] Lotka-Volterra mappings operating
in a four-dimensional simplex with homogeneous tournaments were investigated.
Mappings of this kind will be in a general position, since the skew-symmetric
matrices corresponding to them will also be in a general position. Fixed points
were found for them and their characters were investigated, on the basis of which
fixed point cards were constructed.

The paper is devoted to solving the problem posed in the works [10, 11]. The
Lotka-Volterra mappings, which are not in the general position, are investigated
here. We give a new definition of the construction of a map of fixed points in
contrast to the works [2, 3, 10, 11]. The considered mapping in this paper proves
that fixed point cards are partially oriented graphs.
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