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On the behavior of the solutions for certain neutral
delay integro-differential equations
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Abstract. Some results are given on the behavior of solutions of scalar linear and constant
coefficient neutral delay integro-differential equations. These results are obtained using
two different real roots of the relevant characteristic equation. Finally, an example of
solutions to neutral delay integro-differential equations is given.
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1 Introduction

The neutral delay integro-differential equations play an important role in the the-
ory of functional differential equations. In recent years, the theory of this class
of equations has become an independent field of study. Many results concerning
the theory of neutral delay differential equations were given in the excellent books
by Hale and Verduyn Lunel [1], Kolmanovski and Myshkis [2], Lakshmikantham,
Wen and Zhang [3], and Bellman and Cooke [4]. Besides its theoretical interest,
the study of integro-differential equations has some importance in applications.
For the basic theory of integral equations, we choose to refer to the books by Bur-
ton [5], Corduneanu [6], and Agarwal and O’Regan [7]. Since the first systematic
study was performed by Volterra [8], such equations have been investigated in var-
ious fields such as mathematical biology and control theory (see, for example, [9]).
This system can be found in a wide variety of scientific and engineering fields such
as biology, physics, ecology, medicine, etc. (see [10, 11]). In particular, the delay
integro-differential system has been observed to play an important role in model-
ing many different phenomena in circuit analysis and chemical process simulation;
a comprehensive list of these can be found in [12].

In general, the theory of neutral delay integro-differential equations presents
some additional complications, which are not presented in the theory of the corre-
sponding delay differential equations. So, it is not easy to extend results concern-
ing delay differential equations to neutral delay integro-differential equations.
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This paper deals with the neutral delay integro-differential equation with con-
stant coefficients
t

Yy (t)=ay(t) +bylt —7)+cy(t—7)+ d/ y(s)ds, t>0, (1)

t—T1
y(t) =o¢(t) for —7<t<0, (2)

where a, b, ¢, d are real numbers, 7 is a positive real number, and ¢ is a continuous
initial function given on the interval [—, 0].

By a solution y to the neutral delay integro-differential equation (1), we mean a
continuous real-valued function defined on [—7, c0), which is continuously differ-
entiable on [0, co0) and satisfies (1).

Along with the neutral delay integro-differential equation (1), we associate the
following equation

-
A=a+be ™ +che ™ + d/ e ds, 3)
0
which will be called the characteristic equation of (1). Equation (3) is obtained
from (1) by looking for solutions of the form y(t) = eM fort > —.

Philos and Purnaras [13-15] studied some results on the asymptotic properties
and stability of solutions of linear autonomous delay and neutral delay differential
equations (see also a similar study reference [16]).

Yenigerioglu and other authors [17] investigated the asymptotic behavior and
stability of solutions of neutral-type functional differential equations. Yenicerioglu
[18] obtained some results on the behavior of solutions of linear impulsive neutral-
delay differential equations with constant coefficients. Yenigerioglu and Yal¢in-
bag [19] investigated the asymptotic behavior and stability of solutions of delay
integro-differential equations. Later, Yenigerioglu [20] extended the asymptotic
behavior and stability of solutions of neutral-delay integro-differential equations.
The authors in [21] obtained some results of first-order delay integro-differential
equations. In [22], Wu and Gan obtained the numerical and analytical stability of
solutions of neutral delay integro-differential equations of the form (1). Our work
in this paper is mainly inspired by the results in [22].

In this paper, our aim is to extend the results obtained in [21] to the neutral
delay integro-differential equation. This article concerns the behavior of solutions
to scalar first-order linear neutral delay integro-differential equations (1). Namely
that, a fundamental criterion for the lower and upper bounds of the solutions of
equation (1) is established. The results obtained in this article are obtained using
two appropriately different real roots of the relevant characteristic equation (3).
The techniques used to obtain the results are a combination of the methods used in
[13-21].
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2 Statement of results

Lemma 2.1. Suppose that
c>0, b<0, and d<0. 4)

Let \g be a nonpositive real root of the characteristic equation (3) and let

B(/\O) = ((b + C/\O)T — C) €_>‘07— + d/T Se_AOSdS.

0
Then
14+ (/\0) >0
if (3) has another real root less than Xy, and
1+ B(X) <0

if (3) has another real root greater than ).

Proof. Let F'(\) denote the characteristic function of (3), i.e.,
FOO)=XA—a—be ™ —che™™ —d / e Mds, for A € R. (5)
0

We obtain immediately

F'A)=1+bre ™ +ce (A —1) + d/ se *ds, forAeR.  (6)
0

Furthermore,

F'(\) = =br?e ™ +ere™ M2 — 1)) — d/ s?e ?ds,  for A € R.
0

So, considering (4), we conclude that
F"(\) >0, forall A € (—o0,0]. (7)

Now, assume that (3) has another real root A\; with A\ < Ag (respectively, A\; >
o). From the definition of the function F' by (5) it follows that F'(A;) = F(X\g) =
0, and consequently Rolle’s Theorem guarantees the existence of a point o with
Al < a < A (resp., A\ > « > Ag) such that F'(«) = 0. But, (7) implies that
F’ is positive on («, 00) (resp., F” is negative on (—oo, «)). Thus we must have
F’(Xo) > 0 (resp., F'(N\o) < 0). The proof of Lemma 2.1 can be completed, by
observing that
F'(Mo) = 1+ B(Xo).
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Theorem 2.2. Suppose that
c>0, b<0, and d<0.

Let \y be a non-positive real root of the characteristic equation (3) with 1 +
B(Xo) # 0 where B(No) is defined as in Lemma 2.1, and let

0
L(Xo; @) =¢(0) — codp(—7) + (b+ cAo) e’\"T/ e %p(s)ds

—T

- d/OT e~ M08 {/Z e_)‘ouqb(u)du} ds.

Let also \i be a real root of (3) with \g # Ai. Then, the solution y of (1)-(2)
satisfies

L(Xo; ¢)

Dy (Mo, Mi; ) < e Mt {y(t) T 5(/\0)6/\015} < Dy (Ao, A1; ) (8)

forallt > 0, where

L(Xo; ¢)) e)\ot] }

D1 (do, Ai;¢) = min {e—m [W) 1+ B(

—7<t<0

and

; = —Al L</\0;¢) 0

Note: Since Ay # A1, according to the Lemma 2.1, 1 + B3(\g) # 0.

Proof. Let Ay be a real root of the characteristic equation (3) and let y be the
solution of (1)-(2). Define

x(t) = e Mty (t) for t> —7. )

Then, for every ¢t > 0, we have
t

{y’<t> —ay(®) -~ byl — 1)~ e/t =) —d [

t—1

y(s)ds} et
= 2/ (t) + Noz(t) — az(t) — bx(t — T)e M7

—ce” 7 (2 (t - 7) + doz(t — 7)) — d/ ez (t — s)ds = 0.
0
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Thus, the fact that y satisfies (1) for all £ > 0 is equivalet to
2’ (t) =(a — No)z(t) + (b+ cho) e M a(t — 7)

T (10)
+ce N7 (t —7) + d/ e %2 (t — s)ds.
0
Moreover, the initial condition (2) can be equivalently written
z(t) = e Mp(t) for —7<t<O0. (11)

Furthermore, by using the fact that )\ is a root of (3) and taking into account
L(Xo; @) and (11), we can verify that (10) is equivalent to

z(t) = 2(0) 4+ (a — M) /0 x(s)ds + (b+ c\g) e)‘OT/O x(s—7)ds

+ e N (2(t — 1) — z(—7)) + d/OT e s {/Ot z(u — s)du} ds

t—1

= ¢(0) + (a — \o) /0 x(s)ds + (b+ cho) e_)“"r/ x(s)ds

-7

+ ce™ N7 (x(t —T)— e’\"Tqb(—T)> + d/OT e~ s {/

—S

t—s

x(u)du} ds
t 0
=¢(0)+ (a — )\o)/o x(s)ds + (b+ cho) e)‘oT/_ e~ % (s)ds

t—T
+ (b4 exg) e T / z(s)ds 4+ ce Tz (t — 1) — ch(—7)
0

+ d/OT e~ s {/_OS e MU (u)du + /Ot—s a:(u)du} ds

= L(Ao;¢) + (@ — Xo) /0 x(s)ds + (b + cAo) e’\OT/O - x(s)ds

T t—s
+ e NTx(t —7) + d/ e~ s {/ m(u)du} ds
0 0

T t
= L(\o; ¢) — (be_’\OT + choe 0T + d/ e_)‘osds> / x(s)ds
0 0

t—7
+ (b+ chg) e T / x(s)ds + ce N (t — 7)
0

+ d/OT ¢ {/Ot_S;v(u)du} ds
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= L(\0; @) + ce 2Tx(t — 1) — (b+ chg) e 7 /t x(s)ds
t—1

- d/OT e~ M08 {/t;x(u)du} ds.

Next, we define

LAz 9)
1+ B(Xo)

Thus we can see that the last equation reduces to the following equivalent equation:

for — 7 <t.

2(t) = z(t)

t

2(t) = ce T2 (t — 1) — (b+ cXo) e)“’T/ z(s)ds

t—7

T t
- d/ e~ oS {/ z(u)du} ds for ¢t > 0.
0 t—s

Also, due to the x and z transformations, the following initial condition is obtained
using the initial condition (2):

(12)

L(Xo; ¢)

_m for —7<t<0. 13)

2(t) = e M g(t)
Now, we define
h(t) = Mo~ 2M (1) for — 7 <t (14)

Because of the x and z transformations, the following expression is obtained for
the function h:

L(Xo; ¢)
1+ (M)

Moreover, by using the h function, (12) can be written as equivalent

h(t) = e M! {y(t) — Mt ] for —7 <t. (15)

0
h(t) = ce_)"fh(t —7)— (b4 cho) e_)‘OT/ e<’\'_’\°)sh(s +t)ds

-7

. . (16)
— d/ e~ s {/ e p (g 4 t)du} ds for t > 0.
0 —s
Also, (13) becomes
_ L(Mo; ¢) }
h(t) = e Mt t) — etot 0 T for —7<t<0. 17
0= o - ERO o —r<e<o. a7
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As solution y satisfies the initial condition (2), we can use the function h as well
as the definitions of Dy (Ag, A1; @) and D, (Ao, Ai; @), to see that

Dy (Mg, A1;0) = minoh(t) and D; (Ao, A1;¢) = max  h(t). (18)

—r<t< —7<t<0

Considering (15) and (18), the double inequality (8) can be written equivalent to

i < < > 0.
_ingltngoh(t) < h(t) < _max h(t) forall t>0 (19)

We need to prove that the inequality (19) holds. We will use the fact that h satisfies
(16) for all ¢ > 0 to show that (19) is valid. We just need to prove the following
inequality

min_h(t) < h(t) forall ¢> 0. (20)

—7<t<0

The proof of the inequality

h(t) < max h(t) forall ¢>0
—7<t<0

can be obtained in a similar manner and is therefore omitted. We will obtain (20)
for the rest of the proof. To do this, we are considering an arbitrary real number A
with A < min_A(t), i.e., with

—7<t<0

A<h(t) for —7<t<O0. Q1)

We will show that

A <h(t) forall t>0. (22)

For this purpose, suppose that (22) does not hold. Then, due to (21), there is a
point 9 > 0 such that

A<h(t) for —7<t<ty and h(ty) = A.
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Thus, by using (3), from (16) we obtain

0
A =h(to) = ce M7 h(ty —7) — (b+ cho) e 7 / M2 (s 4 tg)ds

—T

T 0
_ d/ e—)\os {/ €(A'_)‘°)uh(u+to)du} ds
0 —s

0
> A (CGAIT — (b4 cho) e/\UT/ M=) g ¢

-7

T 0
—d/ e oS {/ e(A‘_A‘))“du} ds)
0 -5

1
_ —\NT —AoT =N\ =A0)T
A (ce (b+cho)e <>\1 _)\0> [1 e }

_ d i —)\()S _ —()\]—A())S
<)\1_)\0>/Oe [1 e }ds

_ A N7 —XoT N7
= (()\1 — Xo)ce — (b4 c\o) [e —e }

—d /OT [67)‘05 — ef)“s} ds)

A T
= Ace M7 4+ beMT 4+ d/ e M3ds
Al — Xo ( ! 0
—Xoce N7 — pe= T d/ 6_)‘08d8>
0
A
— (- - - ) =4

Thus, we arrive at a contradiction and therefore (22) is correct. Since (22) is
satisfied for any real number A with A < nlitn<0 h(t), it follows that (20) is
—T

always valid. The proof of the Theorem 2.2 is co;nl_)lete.

We can use Theorem 2.2 to derive the following corollary.

Corollary 2.3. Assume that the conditions in Theorem 2.2 are provided. Then, for
the solutions of (1)-(2), double inequality of the Theorem 2.2 can be written as
follows:

_ _ L(Xo; @) _
D . (A1—=Xo0)t < Aot <D . (A1—=Xo0)t
1 (Ao, A1s0) e <y(t)e 13800 Bl = 2 (Ao, A1; ) e
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and so

i ) L3 o)
A (y(t>e t) 1480

provided that A\; < Ag. Moreover, we immediately observe that this double in-
equality can equivalently be written in the form

L(Xo: ¢)
1+ B(Mo)

< Dy (Mo, Ais @) Mt +

Dy (Ao, Ai; ) Mt Mt < y(t)

L(/\0§ ) Mot
1+ (M)

forall ¢t > 0.

Example 2.4. Consider the differential equation (1) with

1 1 L[
V(0 =500~ ot =D+ =17 [ s tz0 @y

y(t) = ¢(t) for —1<t<0, (24)

where ¢ is an arbitrary continuous function on the interval [—1, 0]. In this example,
we apply the characteristic equation (3). That is, the characteristic equation (3) is

1 1
I e S Wt Iy ST |
A= e +€)\e 4)\ <1 e ) (25)

We see that A = 0 and A\ ~ —0.4 are real roots of (25). Let’s choose Ao = 0 and
A1 = —0.4. In this case, by applying Theorem 2.2, we obtain the following result:
For any continuous real-valued function ¢ on [—1,0], the solution y of (1)—(2)
satisfies

L(0; )

D, (>\07 >\1§¢) < 80'4t {y(t) — Tﬁ(o)

} < Ds (Xos Az )

for all ¢ > 0, where

Do hie) = min {0 o -

—1<t<0 1+ B(O)
D: 0 ns0) = s {0 ot~ F575 ]|

L(0:6) =6(0) — Lo(- —/ o(s s—/ { Z¢(u)du}ds
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and

80)=— (241 —1/1 ds ~ —0.743
= 4 o 4OSS~ . .

Furthermore, by applying Corollary 2.3, we have

Dy (Mo, A3 ¢) e 0¥ ¢

L(0; ¢)

< < . —0.4¢
0257 — y(t) = D2 (AO,)\],Qb)@ +

for all ¢ > 0, and also, since A\; < Ag, we get

, L
Jim y(t) = 5557
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