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Results on common fixed points in Sb-metric spaces
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Abstract. In this paper, we establish new common fixed point theorems for pairs of weakly
compatible mappings within the framework of Sb-metric spaces. By introducing gener-
alized contractive conditions, we demonstrate the existence and uniqueness of common
fixed points for such self-mappings. Our results extend and generalize several well known
fixed point theorems in the existing literature. An example is also provided to support and
clarify the main result.

Keywords. S-metric space, b-metric space, Sb-metric space.

2020 Mathematics Subject Classification. 54H25, 47H10.

1 Introduction

Banach [5] proved the fundamental fixed point theorem, known as the Banach
Contraction Principle. It has wide applications in analysis, differential and integral
equations, optimization, and other areas of mathematics. Over the years, numer-
ous researchers have extended and generalized this theorem in various directions.
The concept of a b-metric space was proposed by Czerwik [6]. Many researchers
have contributed to the study of fixed point theorems in b-metric spaces. Boriceanu
et al. [7] extended the study of fractal operator theory for multivalued operators on
complete b-metric spaces. Aydi et al. [4] established a common fixed point theo-
rem for single-valued and multivalued mappings satisfying a weak φ-contraction
in b-metric spaces. Shatanawi et al. [18] considered the setting of b-metric spaces
to establish results on the common fixed points of two mappings, using a con-
traction condition defined by a comparison function. Abbas et al. [2] developed
common fixed point results for generalized b-order contractive mappings and ap-
plied them to an integral equation. Zada et al. [20] established some fixed point
results for rational type contractive mappings in b-metric spaces, generalizing and
extending existing results. Iqbal et al. [8] introduced a generalized multivalued
(α,L)-almost contraction in b-metric spaces and proved existence and uniqueness
of fixed points, extending earlier results in the literature. Iqbal et al. [9] introduced
a class of generalized (ψ, α, β)-weak contractions and proved several fixed point
theorems in b-metric spaces. Latif et al. [11] proved several fixed point results
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for α-admissible mappings satisfying a Suzuki type contractive condition in the
framework of b-metric spaces.

Sedghi et al. [15] introduced S-metric spaces, explored their properties, and
established several common fixed point theorems for self-mappings on complete
S-metric spaces. Several researchers have studied S-metric spaces and extended
numerous results concerning the existence of fixed points. Singh and Hooda [16]
obtained coupled fixed point results in S-metric spaces. Mlaiki [12] introduced the
complex valued S-metric space and proved that two self mappings in this space
possess a unique common fixed point. Mlaiki [13] introduced α–ψ-contractive
mappings in S-metric spaces, and the existence of fixed points for such mappings
is obtained under certain conditions. Prudhvi [14] established two fixed point
theorems in S-metric spaces, and the results presented here extend and enhance
known findings.

Recently, Souayah and Mlaiki [19] introduced the Sb-metric space as a gen-
eralization of both S-metric and b-metric spaces, and established several fixed
point theorems for various contractive mappings in complete Sb-metric spaces. In
this paper, we establish some common fixed point theorems for pairs of weakly
compatible mappings within the setting of Sb-metric spaces. By employing gener-
alized contractive conditions, we prove the existence and uniqueness of common
fixed points for these self mappings.

2 Preliminaries

Czerwik [6] introduced the concept of a b-metric spacs and it is defined as follows:

Definition 2.1. [6] Let X be a non-empty set and d : X × X → [0,∞) be a
mapping satisfying following properties:

(i) d(x, y) = 0 if and only if x = y for all x, y ∈ X;

(ii) d(x, y) = d(y, x) for all x, y ∈ X;

(iii) there exists a real number s ≥ 1 such that

d(x, y) ≤ s[d(x, z) + d(z, y)],

for all x, y, z ∈ X .

Then d is called a b-metric on X and the ordered pair (X, d) is called b-metric
space with coefficient s.

Sedghi et al. [15] introduced the notion of an S-metric space, which is defined
as follows:
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Definition 2.2. [15] Let X be a non-empty set and S : X ×X ×X → [0,∞) be
a mapping satisfying following properties:

(i) S(x, y, z) = 0 if and only if x = y = z;

(ii) S(x, y, z) ≤ S(x, x, a)+S(y, y, a)+S(z, z, a), ∀ a, x, y, z ∈ X (rectangle
inequality).

Then (X,S) is called a S-metric space.

Souayah et al. [19] integrated the ideas of b-metric spaces and S-metric spaces
to introduce a new category of metric spaces, referred to as Sb-metric spaces,
which is defined as follows:

Definition 2.3. [19] Let X be a non-empty set and s ≥ 1 be a given real number.
Then a mapping Sb : X × X × X → [0,∞) is said to be Sb-metric on X , if
following properties are satisfied:

(i) Sb(x, y, z) = 0 if and only if x = y = z;

(ii) Sb(x, x, y) = Sb(y, y, x);

(iii) Sb(x, y, z) ≤ s
[
Sb(x, x, a) + Sb(y, y, a) + Sb(z, z, a)

]
, ∀ x, y, z, a ∈ X .

Then (X,Sb) is called a Sb-metric space.

Example 2.4. [19] Let X be a set with card(X) ≥ 5. Assume X = X1 ∪X2 is a
partition of X such that card(X1) ≥ 4. Let s ≥ 1 . Then

Sb(x, y, z) =


0 if x = y = z = 0,
3s if (x, y, z) ∈ X3

1 ,

1 if (x, y, z) /∈ X3
1 ,

for all x, y, z ∈ X , is a Sb-metric on X with coefficient s ≥ 1.

Example 2.5. [17] LetX be the set of real numbers and define Sb : X×X×X →
R+ ∪ {0} by

Sb(x, y, z) = |x− y|+ |y − z|+ |z − x|.
Then Sb is an Sb-metric on X with coefficient s ≥ 1.

Example 2.6. [17] Let X = {a, b, c} be a set. Define the mapping Sb : X ×X ×
X → [0,∞) as follows:

Sb(x, y, z) =


0 if x = y = z,

1 if exactly two of x, y, z are equal,
1
4

if all three elements x, y, z are distinct.
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Then Sb is Sb-metric on X with coefficient s ≥ 1.

Definition 2.7. [19] Let (X,Sb) be an Sb-metric space and {xn} be a sequence in
X . Then

(i) A sequence {xn} is called convergent if and only if there exists z ∈ X such
that Sb(xn, xn, z) → 0 as n→ ∞. In this case we write

lim
n→∞

xn = z.

(ii) A sequence {xn} is called a Cauchy sequence if and only if Sb(xn, xn, xm) →
0 as n,m→ ∞.

(iii) (X,Sb) is said to be a complete Sb-metric space if every Cauchy sequence
{xn} converges to a point x ∈ X such that

lim
n,m→∞

Sb(xn, xn, xm) = lim
n,m→∞

Sb(xn, xn, x) = Sb(x, x, x).

Definition 2.8. [1] Let f and g be self maps of a set X . If w = fx = gx, for some
x ∈ X , then x is called coincidence point of f and g, and w is called a point of
coincidence of f and g.

Definition 2.9. [10] Let f and g be self maps of a setX . Then f and g are said to be
weakly compatible, if they commute at any coincidence point. That is fgx = gfx,
for x ∈ X .

Proposition 2.10. [3] Let f and g be weakly compatible self maps of a set X . If f
and g have a unique point of coincidencew = fx = gx, thenw is unique common
fixed point of f and g.

3 Main results

Theorem 3.1. Let (X,Sb) be an Sb-metric space, and let f, g : X → X be two
mappings satisfying

Sb(fx, fy, fz) ≤
1
4
(Sb(gx, gx, fx) + Sb(gy, gy, fy) + Sb(gz, gz, fz))

− ϕ (Sb(gx, gx, fx), Sb(gy, gy, fy), Sb(gz, gz, fz)) ,

for all x, y, z ∈ X , where ϕ : [0,∞)3 → [0,∞) is a continuous function such that
ϕ(x, y, z) = 0 if and only if x = y = z. Suppose further that s is a real number

satisfying 1 ≤ s <
3
2

, and that the following conditions hold:
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(i) f(X) ⊆ g(X);

(ii) g(X) is complete.

Then f and g have a unique coincidence point in X . If f and g are weakly com-
patible, then f and g have a unique common fixed point in X .

Proof. Choose an arbitrary element x0 ∈ X . Because f(X) ⊆ g(X), there exists
an element x1 ∈ X Satisfying f(x0) = g(x1). Repeating this construction, for
each xn ∈ X one can select an element xn+1 ∈ X such that f(xn) = g(xn+1).
For sequence {gxn}, consider

Sb(gxn, gxn, gxn+1) = Sb(fxn−1, fn−1, fxn)

≤ 1
4
(Sb(gxn−1, gxn−1, fxn−1) + Sb(gxn−1, gxn−1, fxn−1) + Sb(gxn, gxn, fxn))

− ϕ (Sb(gxn−1, gxn−1, fxn−1), Sb(gxn−1, gxn−1, fxn−1), Sb(gxn, gxn, fxn))

=
1
4
(2Sb(gxn−1, gxn−1, gxn) + Sb(gxn, gxn, gxn+1))

− ϕ (Sb(gxn−1, gxn−1, gxn), Sb(gxn−1, gxn−1, gxn), Sb(gxn, gxn, gxn+1)) .

Since ϕ(t1, t2, t3) ≥ 0, for all t1, t2, t3 ≥ 0, it follows that

Sb(gxn, gxn, gxn+1) ≤
1
4
(2Sb(gxn−1, gxn−1, gxn) + Sb(gxn, gxn, gxn+1)) .

It implies that

Sb(gxn, gxn, gxn+1) ≤
2
3
Sb(gxn−1, gxn−1, gxn).

Letting α =
2
3
< 1, we obtain

Sb(gxn, gxn, gxn+1) ≤ αSb(gxn−1, gxn−1, gxn) (1)

Similarly, we can show that

Sb(gxn−1, gxn−1, gxn) ≤ αSb(gxn−2, gxn−2, gxn−1). (2)

Using inequalities (1) and (2), we get

Sb(gxn, gxn, gxn+1) ≤ α2Sb(gxn−2, gxn−2, gxn−1).

Continuing this process, we establish

Sb(gxn, gxn, gxn+1) ≤ αnSb(gx0, gx0, gx1).
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By setting Sn = Sb(gxn, gxn, gxn+1), we obtain

Sn ≤ αnS0, n ∈ N. (3)

We now show that the sequence {gxn} is a Cauchy sequence in g(X). Let m >
n > n0, for some n0 ∈ N. Then by repeated use of (iii) in the Definition 2.3, we
obtain

Sb(gxn, gxn, gxm)

≤ s (Sb(gxn, gxn, gxn+1) + Sb(gxn, gxn, gxn+1) + Sb(gxm, gxm, gxn+1))

= 2sSb(gxn, gxn, gxn+1) + sSb(gxn+1, gxn+1, gxm)

≤ 2sSb(gxn, gxn, gxn+1) + s {s (2Sb(gxn+1, gxn+1, gxn+2) + Sb(gxm, gxm, gxn+2))}

= 2sSb(gxn, gxn, gxn+1) + 2s2Sb(gxn+1, gxn+1, gxn+2) + s2Sb(gxm, gxm, gxn+1)

= 2sSn + 2s2Sn+1 + s2Sb(gxn+2, gxn+2, gxm).

Proceeding inductively, we obtain

Sb(gxn, gxn, gxm) ≤ 2sSn + 2s2Sn+1 + 2s3Sn+2 + · · ·+ 2sm−n−1Sm−1

≤ 2sSn + 2s2Sn+1 + 2s3Sn+2 + · · · .

Inequality (3) implies that

Sb(gxn, gxn, gxm) ≤ 2sαnS0 + 2s2αn+1S0 + 2s3αn+2S0 + · · ·

= 2sαn
(
1 + (αs) + (αs)2 + (αs)3 + · · ·

)
S0

= 2sαn

(
1

1 − αs

)
S0.

Since α =
2
3
< 1, it follows that αn → 0 as n → ∞. Hence, letting n → ∞, we

obtain
lim
n→∞

Sb(gxn, gxn, gxm) = 0.

Consequently, the sequence {gxn} is a Cauchy sequence in g(X). As g(X) is
complete, there exists an element q ∈ g(X) for which gxn → q. That is

lim
n→∞

gxn = q = lim
n→∞

fxn−1.

Since q ∈ g(X), there exists p ∈ X such that g(p) = q. We now aim to prove that



Results on common fixed points in Sb-metric spaces 63

q = f(p). For this purpose, consider

Sb(gxn+1, gxn+1, fp) = Sb(fxn, fxn, fp)

≤ 1
4
(Sb(gxn, gxn, fxn) + Sb(gxn, gxn, fxn) + Sb(gp, gp, fp))

− ϕ (Sb(gxn, gxn, fxn), Sb(gxn, gxn, fxn), Sb(gp, gp, fp))

=
1
4
(2Sb(gxn, gxn, gxn+1) + Sb(gp, gp, fp))

− ϕ (Sb(gxn, gxn, fxn), Sb(gxn, gxn, fxn), Sb(gp, gp, fp)) .

Since ϕ(t1, t2, t3) ≥ 0, for all t1, t2, t3 ≥ 0, it follows that

Sb(gxn+1, gxn+1, fp) ≤
1
4
(2Sb(gxn, gxn, gxn+1) + Sb(gp, gp, fp)) .

Letting n→ ∞, we obtain

Sb(q, q, fp) ≤
1
4
(2Sb(q, q, q) + Sb(q, q, fp)) .

It implies that
3
4
Sb(q, q, fp) ≤ 0.

We must have Sb(q, q, fp) ≤ 0. However, we also have Sb(q, q, fp) ≥ 0. There-
fore Sb(q, q, fp) = 0, which implies that fp = q = gp. This shows that p is
a coincidence point of f and g. Now, we claim that f and g have a unique co-
incidence point. Suppose, for the sake of contradiction, that there is an another
coincidence point, say r ̸= p, of f and g. Consider

Sb(gr, gr, gp) = Sb(fr, fr, fp)

≤ 1
4
(Sb(gr, gr, fr) + Sb(gr, gr, fr) + Sb(gp, gp, fp))

− ϕ (Sb(gr, gr, fr), Sb(gr, gr, fr), Sb(gp, gp, fp))

=
1
4
(Sb(gr, gr, gr) + Sb(gr, gr, gr) + Sb(gp, gp, gp))

− ϕ (Sb(gr, gr, gr), Sb(gr, gr, gr), Sb(gp, gp, gp))

=
1
4
(0)− ϕ(0, 0, 0)

= 0.



64 P. S. Sharma and C. T. Aage

Hence, Sb(gr, gr, gp) ≤ 0. However, Sb(gr, gr, gp) ≥ 0. Combining these in-
equalities, we obtain Sb(gr, gr, gp) = 0, which implies that gr = gp. Thus, the
mappings f and g have a unique coincidence point. Furthermore, if f and g are
weakly compatible, then Proposition 2.10 ensures that f and g have a unique com-
mon fixed point in X .

Theorem 3.2. Let (X,Sb) be an Sb-metric space, and let f, g : X → X be two

mappings. Suppose that there exists a real number α with 0 ≤ α <
1
s

, s ≥ 1 is a
given real number such that for all x, y, z ∈ X ,

Sb(fx, fy, fz) ≤ αmax {Sb(gx, gx, fx), Sb(gy, gy, fy), Sb(gz, gz, fz)}
− ϕ (Sb(gx, gx, fx), Sb(gy, gy, fy), Sb(gz, gz, fz)) ,

where ϕ : [0,∞)3 → [0,∞) is a continuous function such that ϕ(x, y, z) = 0 if
and only if x = y = z. If

(i) f(X) ⊆ g(X);

(ii) g(X) is complete.

Then f and g have a unique coincidence point in X . If f and g are weakly com-
patible, then f and g have a unique common fixed point in X .

Proof. Let x0 ∈ X be chosen arbitrarily. Because f(X) ⊆ g(X), there exists
an element x1 ∈ X satisfying f(x0) = g(x1). Repeating this process, for each
xn ∈ X , we can find corresponding xn+1 ∈ X such that f(xn) = g(xn+1). For
sequence {gxn}, consider

Sb(gxn, gxn, gxn+1) = Sb(fxn−1, fn−1, fxn)

≤ αmax {Sb(gxn−1, gxn−1, fxn−1), Sb(gxn−1, gxn−1, fxn−1), Sb(gxn, gxn, fxn)}
− ϕ (Sb(gxn−1, gxn−1, fxn−1), Sb(gxn−1, gxn−1, fxn−1), Sb(gxn, gxn, fxn))

= αmax {Sb(gxn−1, gxn−1, gxn), Sb(gxn, gxn, gxn+1)}
− ϕ (Sb(gxn−1, gxn−1, gxn), Sb(gxn−1, gxn−1, gxn), Sb(gxn, gxn, gxn+1)) .

Since ϕ(t1, t2, t3) ≥ 0, for all t1, t2, t3 ≥ 0, it follows that

Sb(gxn, gxn, gxn+1) ≤ αmax {Sb(gxn−1, gxn−1, gxn), Sb(gxn, gxn, gxn+1)} . (4)

If

max {Sb(gxn−1, gxn−1, gxn), Sb(gxn, gxn, gxn+1)} = Sb(gxn, gxn, gxn+1),

then inequality (4) implies that

Sb(gxn, gxn, gxn+1) ≤ αSb(gxn, gxn, gxn+1).
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This is a contradiction since α < 1. Therefore, we must have

max {Sb(gxn−1, gxn−1, gxn), Sb(gxn, gxn, gxn+1)} = Sb(gxn−1, gxn−1, gxn).

Hence, inequality (4) implies that

Sb(gxn, gxn, gxn+1) ≤ αSb(gxn−1, gxn−1, gxn). (5)

Similarly,

Sb(gxn−1, gxn−1, gxn) ≤ αSb(gxn−2, gxn−2, gxn−1). (6)

Using inequalities (5) and (6), we obtain

Sb(gxn, gxn, gxn+1) ≤ α2Sb(gxn−2, gxn−2, gxn−1).

By repeating this process, we get

Sb(gxn, gxn, gxn+1) ≤ αnSb(gx0, gx0, gx1).

Setting Sn = Sb(gxn, gxn, gxn+1), we obtain

Sn ≤ αnS0, n ∈ N. (7)

We now show that the sequence {gxn} is a Cauchy sequence in g(X). Let m >
n > n0, for some n0 ∈ N. Then by repeated use of (iii) in Definition 2.3, we
obtain

Sb(gxn, gxn, gxm)

≤ s (Sb(gxn, gxn, gxn+1) + Sb(gxn, gxn, gxn+1) + Sb(gxm, gxm, gxn+1))

= 2sSb(gxn, gxn, gxn+1) + sSb(gxn+1, gxn+1, gxm)

≤ 2sSb(gxn, gxn, gxn+1) + s {s (2Sb(gxn+1, gxn+1, gxn+2) + Sb(gxm, gxm, gxn+2))}

= 2sSb(gxn, gxn, gxn+1) + 2s2Sb(gxn+1, gxn+1, gxn+2) + s2Sb(gxm, gxm, gxn+1)

= 2sSn + 2s2Sn+1 + s2Sb(gxn+2, gxn+2, gxm).

Using the same reasoning, it follows that

Sb(gxn, gxn, gxm) ≤ 2sSn + 2s2Sn+1 + 2s3Sn+2 + · · ·+ 2sm−n−1Sm−1

≤ 2sSn + 2s2Sn+1 + 2s3Sn+2 + · · · .

Using inequality (7), we get

Sb(gxn, gxn, gxm) ≤ 2sαnS0 + 2s2αn+1S0 + 2s3αn+2S0 + · · ·

= 2sαn
(
1 + (αs) + (αs)2 + (αs)3 + · · ·

)
S0

= 2sαn

(
1

1 − αs

)
S0.



66 P. S. Sharma and C. T. Aage

Since α =
1
s
< 1, it follows that αn → 0 as n → ∞. Hence, letting n → ∞, we

obtain

lim
n→∞

Sb(gxn, gxn, gxm) = 0.

Hence, the sequence {gxn} is Cauchy in g(X). Because g(X) is complete, there
exists an element q ∈ g(X) such that gxn → q. That is

lim
n→∞

gxn = q = lim
n→∞

fxn−1.

As q ∈ g(X), there exists an element p ∈ X with g(p) = q. We now aim to prove
that q = f(p). For this purpose, consider

Sb(gxn+1, gxn+1, fp) = Sb(fxn, fxn, fp)

≤ αmax {Sb(gxn, gxn, fxn), Sb(gxn, gxn, fxn), Sb(gp, gp, fp)}
− ϕ (Sb(gxn, gxn, fxn), Sb(gxn, gxn, fxn), Sb(gp, gp, fp))

= αmax {Sb(gxn, gxn, gxn+1), Sb(gp, gp, fp)}
− ϕ (Sb(gxn, gxn, gxn+1), Sb(gxn, gxn, gxn+1), Sb(gp, gp, fp)) .

Since ϕ(t1, t2, t3) ≥ 0, for all t1, t2, t3 ≥ 0, it follows that

Sb(gxn+1, gxn+1, fp) ≤ αmax {Sb(gxn, gxn, gxn+1), Sb(gp, gp, fp)} .

Letting n→ ∞, we obtain

Sb(q, q, fp) ≤ αmax {Sb(q, q, q), Sb(q, q, fp)) .

It implies that

Sb(q, q, fp) ≤ αSb(q, q, fp).

Therefore

(1 − α)Sb(q, q, fp) ≤ 0.

Since α < 1, we have (1 − α) > 0. Hence, it follows that Sb(q, q, fp) ≤ 0.
However, by definition of Sb, we know that Sb(q, q, fp) ≥ 0.Thus, Sb(q, q, fp) =
0. This implies that fp = q = gp. This shows that p is a coincidence point of f
and g. Now, we claim that f and g have a unique coincidence point. Suppose, for
the sake of contradiction, that there is an another coincidence point, say r ̸= p, of
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f and g. Consider

Sb(gr, gr, gp) = Sb(fr, fr, fp)

≤ αmax {Sb(gr, gr, fr), Sb(gr, gr, fr), Sb(gp, gp, fp)}
− ϕ (Sb(gr, gr, fr), Sb(gr, gr, fr), Sb(gp, gp, fp))

= αmax {Sb(gr, gr, gr), Sb(gr, gr, gr), Sb(gp, gp, gp)}
− ϕ (Sb(gr, gr, gr), Sb(gr, gr, gr), Sb(gp, gp, gp))

= αmax {0, 0, 0} − ϕ(0, 0, 0)

= 0.

Therefore, Sb(gr, gr, gp) ≤ 0. However, by definition of Sb, we know that
Sb(gr, gr, gp) ≥ 0. Combining these inequalities, we obtain Sb(gr, gr, gp) = 0,
which implies that gr = gp. Hence, f and g have a unique coincidence point.
Furthermore, if f and g are weakly compatible, then Proposition 2.10 ensures that
f and g possess a unique common fixed point in X .

Theorem 3.3. Let (X,Sb) be an Sb-metric space, and let f, g : X → X be two
mappings satisfying

Sb(fx, fy, fz) ≤
1
4
(Sb(gx, gx, fx) + Sb(gy, gy, fy) + Sb(gz, gz, fz))

− ϕ (Sb(gx, gx, fx), Sb(gy, gy, fy))− ψ (Sb(gy, gy, fy), Sb(gz, gz, fz)) ,

for all x, y, z ∈ X , where ϕ, ψ : [0,∞)2 → [0,∞) are continuous functions such
that ϕ(x, y) = 0 if and only if x = y and ψ(x, y) = 0 if and only if x = y. Suppose

further that s is a real number satisfying 1 ≤ s <
3
2

, and that the following
conditions hold:

(i) f(X) ⊆ g(X);

(ii) g(X) is complete.

Then f and g have a unique coincidence point in X . If f and g are weakly com-
patible, then f and g have a unique common fixed point in X .

Proof. Since f(X) ⊆ g(X), for any arbitrary x0 ∈ X , we can find x1 ∈ X
such that f(x0) = g(x1). Proceeding similarly, for each xn ∈ X , we can find
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xn+1 ∈ X such that f(xn) = g(xn+1). For sequence {gxn}, consider

Sb(gxn, gxn, gxn+1) = Sb(fxn−1, fn−1, fxn)

≤ 1
4
(Sb(gxn−1, gxn−1, fxn−1) + Sb(gxn−1, gxn−1, fxn−1) + Sb(gxn, gxn, fxn))

− ϕ (Sb(gxn−1, gxn−1, fxn−1), Sb(gxn−1, gxn−1, fxn−1))

− ψ (Sb(gxn−1, gxn−1, fxn−1), Sb(gxn, gxn, fxn))

=
1
4
(2Sb(gxn−1, gxn−1, gxn) + Sb(gxn, gxn, gxn+1))

− ϕ (Sb(gxn−1, gxn−1, gxn), Sb(gxn−1, gxn−1, gxn))

− ψ (Sb(gxn−1, gxn−1, gxn), Sb(gxn, gxn, gxn+1)) .

Since ϕ(t1, t2) ≥ 0 and ψ(t1, t2) ≥ 0 for all t1, t2 ≥ 0, we deduce that

Sb(gxn, gxn, gxn+1) ≤
1
4
(2Sb(gxn−1, gxn−1, gxn) + Sb(gxn, gxn, gxn+1)) .

Hence, we have

Sb(gxn, gxn, gxn+1) ≤
2
3
Sb(gxn−1, gxn−1, gxn).

Letting α =
2
3
< 1, we obtain

Sb(gxn, gxn, gxn+1) ≤ αSb(gxn−1, gxn−1, gxn). (8)

Similarly, we can show that

Sb(gxn−1, gxn−1, gxn) ≤ αSb(gxn−2, gxn−2, gxn−1). (9)

Using inequalities (8) and (9), we get

Sb(gxn, gxn, gxn+1) ≤ α2Sb(gxn−2, gxn−2, gxn−1).

Continuing this process, it follows that

Sb(gxn, gxn, gxn+1) ≤ αnSb(gx0, gx0, gx1).

By setting Sn = Sb(gxn, gxn, gxn+1), we obtain

Sn ≤ αnS0, n ∈ N. (10)
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We now show that the sequence {gxn} is a Cauchy sequence in g(X). Let m >
n > n0, for some n0 ∈ N. Then by repeated use of (iii) in Definition 2.3, we
obtain

Sb(gxn, gxn, gxm)

≤ s (Sb(gxn, gxn, gxn+1) + Sb(gxn, gxn, gxn+1) + Sb(gxm, gxm, gxn+1))

= 2sSb(gxn, gxn, gxn+1) + sSb(gxn+1, gxn+1, gxm)

≤ 2sSb(gxn, gxn, gxn+1) + s {s (2Sb(gxn+1, gxn+1, gxn+2) + Sb(gxm, gxm, gxn+2))}

= 2sSb(gxn, gxn, gxn+1) + 2s2Sb(gxn+1, gxn+1, gxn+2) + s2Sb(gxm, gxm, gxn+1)

= 2sSn + 2s2Sn+1 + s2Sb(gxn+2, gxn+2, gxm).

Continuing in the same manner, we obtain

Sb(gxn, gxn, gxm) ≤ 2sSn + 2s2Sn+1 + 2s3Sn+2 + · · ·+ 2sm−n−1Sm−1

≤ 2sSn + 2s2Sn+1 + 2s3Sn+2 + · · · .

Using inequality (10), we get

Sb(gxn, gxn, gxm) ≤ 2sαnS0 + 2s2αn+1S0 + 2s3αn+2S0 + · · ·

= 2sαn
(
1 + (αs) + (αs)2 + (αs)3 + · · ·

)
S0

= 2sαn

(
1

1 − αs

)
S0.

Since α =
2
3
< 1, it follows that αn → 0 as n → ∞. Hence, letting n → ∞, we

obtain

lim
n→∞

Sb(gxn, gxn, gxm) = 0.

Hence, the sequence {gxn} is Cauchy in g(X). As g(X) is complete, there exists
an element q ∈ g(X) such that gxn → q. That is

lim
n→∞

gxn = q = lim
n→∞

fxn−1.

Since q ∈ g(X), there exists an element p ∈ X such that g(p) = q. We now aim
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to prove that q = f(p). For this purpose, consider

Sb(gxn+1, gxn+1, fp) = Sb(fxn, fxn, fp)

≤ 1
4
(Sb(gxn, gxn, fxn) + Sb(gxn, gxn, fxn) + Sb(gp, gp, fp))

− ϕ (Sb(gxn, gxn, fxn), Sb(gxn, gxn, fxn))

− ψ (Sb(gxn, gxn, fxn), Sb(gp, gp, fp))

=
1
4
(2Sb(gxn, gxn, gxn+1) + Sb(gp, gp, fp))

− ϕ (Sb(gxn, gxn, gxn+1), Sb(gxn, gxn, gxn+1))

− ψ (Sb(gxn, gxn, gxn+1), Sb(gp, gp, fp)) .

Since ϕ(t1, t2) ≥ 0 and ψ(t1, t2) ≥ 0 for all t1, t2 ≥ 0, it follows that

Sb(gxn+1, gxn+1, fp) ≤
1
4
(2Sb(gxn, gxn, gxn+1) + Sb(gp, gp, fp)) .

Letting n→ ∞, we obtain

Sb(q, q, fp) ≤
1
4
(2Sb(q, q, q) + Sb(q, q, fp)) .

It implies that
3
4
Sb(q, q, fp) ≤ 0.

It follows that Sb(q, q, fp) ≤ 0. However, we also have Sb(q, q, fp) ≥ 0. There-
fore Sb(q, q, fp) = 0, which implies that fp = q = gp. This shows that p is
a coincidence point of f and g. Now, we claim that f and g have a unique co-
incidence point. Suppose, for the sake of contradiction, that there is an another
coincidence point, say r ̸= p, of f and g. Consider

Sb(gr, gr, gp) = Sb(fr, fr, fp)

≤ 1
4
(Sb(gr, gr, fr) + Sb(gr, gr, fr) + Sb(gp, gp, fp))

− ϕ (Sb(gr, gr, fr), Sb(gr, gr, fr))− ψ (Sb(gr, gr, fr), Sb(gp, gp, fp))

=
1
4
(Sb(gr, gr, gr) + Sb(gr, gr, gr) + Sb(gp, gp, gp))

− ϕ (Sb(gr, gr, gr), Sb(gr, gr, gr))− ψ (Sb(gr, gr, gr), Sb(gp, gp, gp))

=
1
4
(0)− ϕ(0, 0)− ψ(0, 0)

= 0.
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Therefore, Sb(gr, gr, gp) ≤ 0. However, we know that Sb(gr, gr, gp) ≥ 0.
Combining these inequalities, we obtain Sb(gr, gr, gp) = 0, which implies that
gr = gp. Hence, f and g have a unique coincidence point. Furthermore, if f
and g are weakly compatible, then it follows from Proposition 2.10 that f and g
possess a unique common fixed point in X .

Theorem 3.4. Let (X,Sb) be an Sb-metric space, and let f, g : X → X be two

mappings. Suppose that there exists a real number α with 0 ≤ α <
1
s

, s ≥ 1 is a
given real number such that for all x, y, z ∈ X ,

Sb(fx, fy, fz) ≤ αmax {Sb(gx, gx, fx), Sb(gy, gy, fy), Sb(gz, gz, fz)}
− ϕ (Sb(gx, gx, fx), Sb(gy, gy, fy))− ψ (Sb(gy, gy, fy), Sb(gz, gz, fz)) ,

where ϕ, ψ : [0,∞)2 → [0,∞) are continuous functions such that ϕ(x, y) = 0 if
and only if x = y and ψ(x, y) = 0 if and only if x = y. If

(i) f(X) ⊆ g(X);

(ii) g(X) is complete.

Then f and g have a unique coincidence point in X . If f and g are weakly com-
patible, then f and g have a unique common fixed point in X .

Proof. Since f(X) ⊆ g(X), for any arbitrary x0 ∈ X , there exists x1 ∈ X
such that f(x0) = g(x1). Continuing in this way, for any xn ∈ X , we can find
xn+1 ∈ X so that f(xn) = g(xn+1). For sequence {gxn}, consider

Sb(gxn, gxn, gxn+1) = Sb(fxn−1, fn−1, fxn)

≤ αmax {Sb(gxn−1, gxn−1, fxn−1), Sb(gxn−1, gxn−1, fxn−1), Sb(gxn, gxn, fxn)}
− ϕ (Sb(gxn−1, gxn−1, fxn−1), Sb(gxn−1, gxn−1, fxn−1))

− ψ (Sb(gxn−1, gxn−1, fxn−1), Sb(gxn, gxn, fxn))

= αmax {Sb(gxn−1, gxn−1, gxn), Sb(gxn, gxn, gxn+1)}
− ϕ (Sb(gxn−1, gxn−1, gxn), Sb(gxn−1, gxn−1, gxn))

− ψ (Sb(gxn−1, gxn−1, gxn), Sb(gxn, gxn, gxn+1)) .

Since ϕ(t1, t2) ≥ 0 and ψ(t1, t2) ≥ 0 for all t1, t2 ≥ 0, it follows that

Sb(gxn, gxn, gxn+1) ≤ αmax {Sb(gxn−1, gxn−1, gxn), Sb(gxn, gxn, gxn+1)} . (11)

If

max {Sb(gxn−1, gxn−1, gxn), Sb(gxn, gxn, gxn+1)} = Sb(gxn, gxn, gxn+1),
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then inequality (11) implies that

Sb(gxn, gxn, gxn+1) ≤ αSb(gxn, gxn, gxn+1).

This is a contradiction since α < 1. Therefore, we must have

max {Sb(gxn−1, gxn−1, gxn), Sb(gxn, gxn, gxn+1)} = Sb(gxn−1, gxn−1, gxn).

Hence, inequality (11) implies that

Sb(gxn, gxn, gxn+1) ≤ αSb(gxn−1, gxn−1, gxn). (12)

Similarly,

Sb(gxn−1, gxn−1, gxn) ≤ αSb(gxn−2, gxn−2, gxn−1). (13)

Using inequalities (12) and (13), we obtain

Sb(gxn, gxn, gxn+1) ≤ α2Sb(gxn−2, gxn−2, gxn−1).

Proceeding by induction, we get

Sb(gxn, gxn, gxn+1) ≤ αnSb(gx0, gx0, gx1).

By setting Sn = Sb(gxn, gxn, gxn+1), we obtain

Sn ≤ αnS0, n ∈ N. (14)

We now show that the sequence {gxn} is a Cauchy sequence in g(X). Let m >
n > n0, for some n0 ∈ N. Then by repeated use of (iii) in Definition 2.3, we
obtain

Sb(gxn, gxn, gxm)

≤ s (Sb(gxn, gxn, gxn+1) + Sb(gxn, gxn, gxn+1) + Sb(gxm, gxm, gxn+1))

= 2sSb(gxn, gxn, gxn+1) + sSb(gxn+1, gxn+1, gxm)

≤ 2sSb(gxn, gxn, gxn+1) + s {s (2Sb(gxn+1, gxn+1, gxn+2) + Sb(gxm, gxm, gxn+2))}

= 2sSb(gxn, gxn, gxn+1) + 2s2Sb(gxn+1, gxn+1, gxn+2) + s2Sb(gxm, gxm, gxn+1)

= 2sSn + 2s2Sn+1 + s2Sb(gxn+2, gxn+2, gxm).

Continuing in the same manner, we obtain

Sb(gxn, gxn, gxm) ≤ 2sSn + 2s2Sn+1 + 2s3Sn+2 + · · ·+ 2sm−n−1Sm−1

≤ 2sSn + 2s2Sn+1 + 2s3Sn+2 + · · · .
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Using inequality (14), we get

Sb(gxn, gxn, gxm) ≤ 2sαnS0 + 2s2αn+1S0 + 2s3αn+2S0 + · · ·

= 2sαn
(
1 + (αs) + (αs)2 + (αs)3 + · · ·

)
S0

= 2sαn

(
1

1 − αs

)
S0.

Since α =
1
s
< 1, it follows that αn → 0 as n → ∞. Hence, letting n → ∞, we

obtain
lim
n→∞

Sb(gxn, gxn, gxm) = 0.

Therefore, {gxn} is a Cauchy sequence in g(X). Since g(X) is complete, there
exists q ∈ g(X) such that gxn → q. That is

lim
n→∞

gxn = q = lim
n→∞

fxn−1.

As q ∈ g(X), there exists p ∈ X such that g(p) = q. We now aim to prove that
q = f(p). For this purpose, consider

Sb(gxn+1, gxn+1, fp) = Sb(fxn, fxn, fp)

≤ αmax {Sb(gxn, gxn, fxn), Sb(gxn, gxn, fxn), Sb(gp, gp, fp)}
− ϕ (Sb(gxn, gxn, fxn), Sb(gxn, gxn, fxn))

− ψ (Sb(gxn, gxn, fxn), Sb(gp, gp, fp))

= αmax {Sb(gxn, gxn, gxn+1), Sb(gp, gp, fp)}
− ϕ (Sb(gxn, gxn, gxn+1), Sb(gxn, gxn, gxn+1))

− ψ (Sb(gxn, gxn, gxn+1), Sb(gp, gp, fp)) .

Since ϕ(t1, t2) ≥ 0 and ψ(t1, t2) ≥ 0 for all t1, t2, t3 ≥ 0, it follows that

Sb(gxn+1, gxn+1, fp) ≤ αmax {Sb(gxn, gxn, gxn+1), Sb(gp, gp, fp)} .

Letting n→ ∞, we obtain

Sb(q, q, fp) ≤ αmax {Sb(q, q, q), Sb(q, q, fp)) .

It implies that
Sb(q, q, fp) ≤ αSb(q, q, fp).

Therefore
(1 − α)Sb(q, q, fp) ≤ 0.
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Since α < 1, we have (1 − α) > 0. Hence, it follows that Sb(q, q, fp) ≤ 0.
However, by definition of Sb, we know that Sb(q, q, fp) ≥ 0. Thus, Sb(q, q, fp) =
0. This implies that fp = q = gp. This shows that p is a coincidence point of f
and g. Now, we claim that f and g have a unique coincidence point. Suppose, for
the sake of contradiction, that there is an another coincidence point, say r ̸= p, of
f and g. Consider

Sb(gr, gr, gp) = Sb(fr, fr, fp)

≤ αmax {Sb(gr, gr, fr), Sb(gr, gr, fr), Sb(gp, gp, fp)}
− ϕ (Sb(gr, gr, fr), Sb(gr, gr, fr))− ψ (Sb(gr, gr, fr), Sb(gp, gp, fp))

= αmax {Sb(gr, gr, gr), Sb(gr, gr, gr), Sb(gp, gp, gp)}
− ϕ (Sb(gr, gr, gr), Sb(gr, gr, gr))− ψ (Sb(gr, gr, gr), Sb(gp, gp, gp))

= αmax {0, 0, 0} − ϕ(0, 0)− ψ(0, 0)

= 0.

Therefore, Sb(gr, gr, gp) ≤ 0. However, we know that Sb(gr, gr, gp) ≥ 0.
Combining these inequalities, we obtain Sb(gr, gr, gp) = 0, which implies that
gr = gp. Hence, f and g have a unique coincidence point. Furthermore, if f
and g are weakly compatible, then Proposition 2.10 guarantees that f and g have
a unique common fixed point in X .

Example 3.5. LetX =

[
0,

1
2

]
and define the Sb-metric Sb : X×X×X → [0,∞)

by

Sb(x, y, z) = |x− y|+ |y − z|+ |z − x| for all x, y, z ∈ X.

Now, define the mappings f, g : X → X by

f(x) =
x

8
, g(x) =

x

2
, for all x ∈ X,

and let

ϕ(x, y, z) =
x+ y + z

16
, (x, y, z) ∈ [0,∞)3.

Then f(X) =

[
0,

1
16

]
⊆

[
0,

1
4

]
= g(X) and g(X) is a closed interval in R and
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hence complete. Now, for x, y, z ∈ X , we have

Sb(fx, fy, fz) = Sb

(x
4
,
y

4
,
z

4

)
=

∣∣∣x
8
− y

8

∣∣∣+ ∣∣∣y
8
− z

8

∣∣∣+ ∣∣∣ z
x
− x

8

∣∣∣
=

1
8
{|x− y|+ |y − z|+ |z − x|} . (15)

Let us suppose that x ≥ y ≥ z. Then

|x− y|+ |y − z|+ |z − x| = (x− y) + (y − z)− (z − x) = 2(x− z).

Clearly, on
[

0,
1
2

]
, 2(x − z) is maximum when x =

1
2

and z = 0 and it is

2
(

1
2
− 0

)
= 1. That is, the maximum value of |x − y| + |y − z| + |z − x| on[

0,
1
2

]
is 1. Thus, equation (15) implies that Sb(fx, fy, fz) attains its maximum

value
1
8

on
[

0,
1
2

]
. Now,

Sb(gx, gx, fx) = Sb

(x
2
,
x

2
,
x

8

)
=

∣∣∣x
2
− x

2

∣∣∣+ ∣∣∣x
2
− x

8

∣∣∣+ ∣∣∣x
8
− x

2

∣∣∣
= 2

(x
2
− x

8

)
=

3x
4
.

In a similar manner, it can be shown that

Sb(gy, gy, fy) =
3y
4

and Sb(gz, gz, fz) =
3z
4
.
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Therefore,

1
4
(Sb(gx, gx, fx) + Sb(gy, gy, fy) + Sb(gz, gz, fz))

− ϕ (Sb(gx, gx, fx), Sb(gy, gy, fy), Sb(gz, gz, fz))

=
1
4

(
3x
4

+
3y
4

+
3z
4

)
− ϕ

(
3x
4
,

3y
4
,

3z
4

)

=
3
16

(x+ y + z)−

(
3x
4

+
3y
4

+
3z
4

)
16

=
9
64

(x+ y + z). (16)

The maximum value of
9
64

(x+y+z) on
[

0,
1
2

]
is

27
128

. Therefore, from (15) and

(16) we have

Sb(fx, fy, fz) ≤
1
4
(Sb(gx, gx, fx) + Sb(gy, gy, fy) + Sb(gz, gz, fz))

− ϕ (Sb(gx, gx, fx), Sb(gy, gy, fy), Sb(gz, gz, fz)) . (17)

Therefore, by Theorem 3.1, the mappings f and g have a unique coincidence point
in X , which is x = 0. Moreover, since fg(0) = g(0) = 0 = f(0) = gf(0), the
mappings f and g are weakly compatible. Therefore, by Theorem 3.1 f and g
have a unique common fixed point x = 0 ∈ X .

4 Conclusion

In this paper, we have established some common fixed point theorems for a pair
of weakly compatible mappings within the framework of Sb-metric spaces. Our
results extend and generalize several existing fixed point theorems. By introducing
generalized contractive conditions for weakly compatible self mappings, we have
shown that such mappings admit a unique common fixed point.
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