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Results on common fixed points in Sp-metric spaces
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Abstract. In this paper, we establish new common fixed point theorems for pairs of weakly
compatible mappings within the framework of S;-metric spaces. By introducing gener-
alized contractive conditions, we demonstrate the existence and uniqueness of common
fixed points for such self-mappings. Our results extend and generalize several well known
fixed point theorems in the existing literature. An example is also provided to support and
clarify the main result.
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1 Introduction

Banach [5] proved the fundamental fixed point theorem, known as the Banach
Contraction Principle. It has wide applications in analysis, differential and integral
equations, optimization, and other areas of mathematics. Over the years, numer-
ous researchers have extended and generalized this theorem in various directions.
The concept of a b-metric space was proposed by Czerwik [6]. Many researchers
have contributed to the study of fixed point theorems in b-metric spaces. Boriceanu
et al. [7] extended the study of fractal operator theory for multivalued operators on
complete b-metric spaces. Aydi et al. [4] established a common fixed point theo-
rem for single-valued and multivalued mappings satisfying a weak -contraction
in b-metric spaces. Shatanawi et al. [18] considered the setting of b-metric spaces
to establish results on the common fixed points of two mappings, using a con-
traction condition defined by a comparison function. Abbas et al. [2] developed
common fixed point results for generalized b-order contractive mappings and ap-
plied them to an integral equation. Zada et al. [20] established some fixed point
results for rational type contractive mappings in b-metric spaces, generalizing and
extending existing results. Igbal et al. [8] introduced a generalized multivalued
(ar, L)-almost contraction in b-metric spaces and proved existence and uniqueness
of fixed points, extending earlier results in the literature. Igbal et al. [9] introduced
a class of generalized (v, v, 5)-weak contractions and proved several fixed point
theorems in b-metric spaces. Latif et al. [11] proved several fixed point results
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for a-admissible mappings satisfying a Suzuki type contractive condition in the
framework of b-metric spaces.

Sedghi et al. [15] introduced S-metric spaces, explored their properties, and
established several common fixed point theorems for self-mappings on complete
S-metric spaces. Several researchers have studied S-metric spaces and extended
numerous results concerning the existence of fixed points. Singh and Hooda [16]
obtained coupled fixed point results in S-metric spaces. Mlaiki [12] introduced the
complex valued S-metric space and proved that two self mappings in this space
possess a unique common fixed point. Mlaiki [13] introduced a—-contractive
mappings in S-metric spaces, and the existence of fixed points for such mappings
is obtained under certain conditions. Prudhvi [14] established two fixed point
theorems in S-metric spaces, and the results presented here extend and enhance
known findings.

Recently, Souayah and Mlaiki [19] introduced the Sp-metric space as a gen-
eralization of both S-metric and b-metric spaces, and established several fixed
point theorems for various contractive mappings in complete Sp-metric spaces. In
this paper, we establish some common fixed point theorems for pairs of weakly
compatible mappings within the setting of .Sp-metric spaces. By employing gener-
alized contractive conditions, we prove the existence and uniqueness of common
fixed points for these self mappings.

2 Preliminaries

Czerwik [6] introduced the concept of a b-metric spacs and it is defined as follows:
Definition 2.1. [6] Let X be a non-empty set and d : X x X — [0,00) be a
mapping satisfying following properties:

(i) d(z,y) =0ifand only if x = y forall z,y € X;

(ii) d(z,y) =d(y,z) forall z,y € X;

(iii) there exists a real number s > 1 such that
d(z,y) < sld(z, z) + d(z,y)],

forall z,y,z € X.
Then d is called a b-metric on X and the ordered pair (X, d) is called b-metric

space with coefficient s.

Sedghi et al. [15] introduced the notion of an S-metric space, which is defined
as follows:
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Definition 2.2. [15] Let X be a non-empty setand S : X x X x X — [0,00) be
a mapping satisfying following properties:
() S(z,y,z) =0ifandonlyifz =y = z;
(i) S(z,y,2) < S(x,z,a)+S(y,y,a)+S(z,2,a), Va,z,y,z € X (rectangle
inequality).
Then (X, S) is called a S-metric space.

Souayah et al. [19] integrated the ideas of b-metric spaces and S-metric spaces
to introduce a new category of metric spaces, referred to as Sp-metric spaces,
which is defined as follows:

Definition 2.3. [19] Let X be a non-empty set and s > 1 be a given real number.
Then a mapping S, : X x X x X — [0,00) is said to be Sp-metric on X, if
following properties are satisfied:

(i) Sp(z,y,z) =0ifandonly ifx =y = z;

(ii) Sb(ZL', z, y) = Sb(y7 Y, JI);
(i) Sp(w,y,2) < s[ Sp(z,z,a) + Sp(y,y,a) + Sp(z, 2,a)], V&,y,2,a € X.
Then (X, Sp) is called a Sp-metric space.

Example 2.4. [19] Let X be a set with card(X) > 5. Assume X = X; U X, isa
partition of X such that card(X;) > 4. Let s > 1. Then

0 ifz=y=2=0,
Sp(x,y,2) =< 3s if (z,y,2) € X3,
1 if(z,y,2) gZXIS,

forall z,y,z € X, is a Sp-metric on X with coefficient s > 1.

Example 2.5. [17] Let X be the set of real numbers and define Sp, : X x X x X —
R* U {0} by
Sp(@,y,2) = |o —y|+ |y — 2| + ]2 — x|.

Then Sy is an Sp-metric on X with coefficient s > 1.

Example 2.6. [17] Let X = {a, b, ¢} be a set. Define the mapping S : X x X x
X — [0, 00) as follows:

ifx = Yy =2z,
Sp(x,y,2) = if exactly two of z, y, z are equal,

if all three elements x, y, z are distinct.

A== O
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Then S}, is Sp-metric on X with coefficient s > 1.
Definition 2.7. [19] Let (X, S;) be an Sp-metric space and {x,, } be a sequence in
X. Then

(i) A sequence {x,} is called convergent if and only if there exists z € X such

that Sp(xy, Ty, 2) — 0 as n — oo. In this case we write

lim x, = z.
n—oo

(ii) A sequence {xy,} is called a Cauchy sequence if and only if Sy (2, Zp, Tp) —
0asn,m — oo.
(iii) (X, Sp) is said to be a complete Sp-metric space if every Cauchy sequence

{xn} converges to a point 2 € X such that

im  Sy(zy, T, Tm) = lm  Sp(zp, Tn, ) = Sp(x, z, ).
n,Mm—00 n,Mm—00

Definition 2.8. [1] Let f and g be self maps of aset X. If w = fx = gz, for some
x € X, then z is called coincidence point of f and g, and w is called a point of
coincidence of f and g.

Definition 2.9. [10] Let f and g be self maps of a set X. Then f and g are said to be
weakly compatible, if they commute at any coincidence point. Thatis fgz = gfz,
forz € X.

Proposition 2.10. [3] Let f and g be weakly compatible self maps of a set X. If f
and g have a unique point of coincidence w = fx = gx, then w is unique common
fixed point of f and g.
3 Main results
Theorem 3.1. Ler (X, Sy) be an Sy-metric space, and let f,g : X — X be two
mappings satisfying

1

So(fa, fy, f2) < 5 (Selgw, gz, f) + So(9y, 9y, fy) + Sp(92, 92, f2))
— ¢ (Solgz, 9z, fx), So(9y, 9y, fY). Se(92, 92, f2)) ,

forallz,y,z € X, where ¢ : [0,00)> — [0, 00) is a continuous function such that
d(x,y,2) = 0 ifand only if x = y = z. Suppose further that s is a real number

3
satisfying 1 < s < o and that the following conditions hold:
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(i f(X) € g(X);
(ii) g(X) is complete.

Then f and g have a unique coincidence point in X. If f and g are weakly com-
patible, then f and g have a unique common fixed point in X.

Proof. Choose an arbitrary element o € X. Because f(X) C g(X), there exists
an element z; € X Satisfying f(xzo) = g(x1). Repeating this construction, for
each x,, € X one can select an element 2,11 € X such that f(z,) = g(zn11).
For sequence {gz,, }, consider
Sb(gxn: 9T, gx'rrH) = Sb(fxn—la fn—17 fxn)
1
S Z (Sb(gxnflvgxnflv fxnfl) + Sb(gxnflvgxnflv fxnfl) + Sb(gxn7 gGTn, fxn))
- ¢ (Sb(gxn—lvgxn—lv fxn—l)v Sb(gxn—lvgxn—lv f‘TTL—l)7 Sb(gxna gTn, fxn))
1
- Z (zsb(gxnfl y 9Tn—1, gxn) + Sb(gxny gTn, ganrl))
- ¢ (Sb(gxn—l y 9Tn—1, gx"L)a Sb(gxn—l ;9Tn—1, gl'n), Sb(gxnv gTn, gxn-%—l)) .

Since ¢(t1, ta,t3) > 0, for all ¢y, ¢, t3 > 0, it follows that

1
Sb(gxnvgxmgxnﬂ) < 4 (2Sb(gxn717gmnflag$n> + Sb(gl’mgxmgxnﬂ)) .

It implies that
2
Sb(92n, 9Tn, 9Tni1) < 356(9n—1, 9n—1, 92n).

Letting o = % < 1, we obtain
Sp(9Tn, gTn, 9Tny1) < SH(gTn—1, 9Tn—1, gTn) (1
Similarly, we can show that
Sp(9Tn—1, 9Tn—1,9%n) < S(9Tn—2, 9Tn—2, gTn—1)- (2)
Using inequalities (1) and (2), we get
So(9%n, 9, gTn1) < P Sp(gTn—2, gTn—2, gTn—1)-
Continuing this process, we establish

S(9Tn, g, gTni1) < & Sp(gx0, 970, g1 ).
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By setting S,, = Sp(9xn, gTn, gTn+1), We obtain
Sp < a™Sy, neN. 3)

We now show that the sequence {gz,,} is a Cauchy sequence in g(X). Let m >
n > ng, for some ny € N. Then by repeated use of (iii) in the Definition 2.3, we
obtain

Sp(92n, 9Tn, 9Tm)

< 8(Sb(9%ns 9Tns 9Tn+1) + S6(9Tns 9T, gTnt1) + So(9Tm, 9T, 9Tn+1))

= 255(9%n, 9Tn, 9Tny1) + 85(9%n i1, GTni1s 9Zm)

< 2884(9%n, 9Tn, 9Tn+1) + 5 {8 (286(9Tn+1, 9Tn+1, 9Tn12) + Sp(9Tm, 9Tm, 9Tn+2))}
= 255y(9n, 9Tn, 9Tn+1) + 25”5 (9Tn 11, 9T i1, 9Tn12) + 5°Sh(9Tms GTm, GTni1)
=255, +25*Spi1 + SZSb(gmn+2, 9Tn12,9Tm,)-

Proceeding inductively, we obtain

Sb(gxna gTn, gxm) < ZSSn + 282Sn+1 + 2$3Sn+2 4+ o4 zsm_n_lsm,]
<258, +25%Sn1 + 287 S0+

Inequality (3) implies that

Sp(gZns Gn, gTm) < 250" Sy 4 252" 1Sy + 253" 28y + - - -
=2sa" (1 + (as) + (as)* + (as)® +--+) Sy

1
= 2sa” ( ) So.
1—as

. 2 . .
Since o = 3 < 1, it follows that o™ — 0 as n — oo. Hence, letting n — oo, we

obtain

lim Sy(9xn, 9Zn, gTm) = 0.
n—oo

Consequently, the sequence {gx,} is a Cauchy sequence in g(X). As g(X) is
complete, there exists an element ¢ € g(X) for which gz, — ¢. That is

lim gz, =q= lim fx, ;.
n—oo n—oo

Since g € g(X), there exists p € X such that g(p) = ¢g. We now aim to prove that
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q = f(p). For this purpose, consider
Sp(gTn+1, 9Tn+1, fP) = Sp(fTn, fTn, fD)
< % (Sb(92n, 9Tns f0) + Sp(92n, 9T, f2n) + Se(gp, gp, P))
= & (Sp(92n, g2n, fan), Sp(9Tn, g2n, frn), Se(gp, gp, [P))
= % (25h(92n, 92, 9Tnt1) + Sp(gp, gp, f))
— ¢ (S6(9n, 9Tn, f2n), So(9Tn, 9Tn, fn), So(gp, gp, fP)) -

Since ¢(ty,ta,t3) > 0, for all ¢, tp, t3 > 0, it follows that

1
Sp(92n+1, 9Tnt1, [p) < 1 (250(9n, 9Tn, gTn+1) + So(gp, gp, [P)) -

Letting n — oo, we obtain

1
Sb(‘]a q, fp) S Z (ZSb(qy q, Q) + Sb((], q, fp)> .
It implies that
3
1o0(¢.4, fp) < 0.

We must have Sy(q, ¢, fp) < 0. However, we also have Sy(q, g, fp) > 0. There-
fore Sp(q, q, fp) = 0, which implies that fp = ¢ = gp. This shows that p is
a coincidence point of f and g. Now, we claim that f and g have a unique co-
incidence point. Suppose, for the sake of contradiction, that there is an another
coincidence point, say r # p, of f and g. Consider

Sb(gr, gr, gp) = Se(fr, [, [p)
< 5 (Sulorgr. f7) + Sulor, . Ir) + 519, 9p. f)
= ¢ (Sulgr, gr, 1), Se(gr; gr, fr), Sv(gp, gp, [P))
= % (Sv(gr, gr, gr) + Sp(gr, gr, gr) + Sp(gp, gp, gp))
— ¢ (Sulgr, gr, gr), Sel(gr, gr; gr), Se(gp; gp, gp))
(0) = ¢(0,0,0)

S alm—
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Hence, Sy(gr, gr, gp) < 0. However, Sy(gr, gr,gp) > 0. Combining these in-
equalities, we obtain Sy(gr, gr, gp) = 0, which implies that gr = gp. Thus, the
mappings f and g have a unique coincidence point. Furthermore, if f and g are
weakly compatible, then Proposition 2.10 ensures that f and g have a unique com-
mon fixed point in X. o

Theorem 3.2. Let (X, Sy) be an Sy-metric space, and let f,g : X — X be two

mappings. Suppose that there exists a real number a with) < a < —, s > lisa
s

given real number such that for all x,y,z € X,

Sy(fx, fy, fz) < amax {Sy(gz, gz, fx), Sp(g9y, 9y, fy), Su(92, 92, f2)}
— ¢ (Sy(gz, gz, fx), Sy, 9y, fy), Se(92, 92, f2)),

where ¢ : [0,00)> — [0,00) is a continuous function such that ¢(x,y,z) = 0 if
andonly ifv =y = z. If

(i) f(X) € g(X);

(ii) g(X) is complete.

Then f and g have a unique coincidence point in X. If f and g are weakly com-
patible, then f and g have a unique common fixed point in X.

Proof. Let zy € X be chosen arbitrarily. Because f(X) C ¢(X), there exists
an element z; € X satisfying f(xo) = g(z1). Repeating this process, for each
x, € X, we can find corresponding x,,+1 € X such that f(x,) = g(z,+1). For
sequence {gx,, }, consider

Sp(92ns 9Tn; 9Tn11) = Sp(fTn—1, fr-1, fTn)
< amax {Sy(9Tn—1, 9Tn—1, [Tn-1), So(9Tn—1, 9Tn—1, [Tn—1), So(9Tn, 9Tn, fTs)}
— & (So(92n—1,9Tn—1, fTn—-1), So(9Tn—1, 9Tn—1, fTn—-1), Sb(9Tn, 9Tn, f2n))
= amax {Sy(9Tn—1, 9Tn—1,9Tn), Sp(9Tn; 9Tn, GTn+1)}
— ¢ (Sb(9Tn—1,9Tn-1,9%n), So(9Tn—1, 9Tn-1, 9%n), So(9Tn, 9Tn, 9Tn+1)) -
Since ¢(ty,ta,t3) > 0, for all ¢y, tp,t3 > 0, it follows that
Sp(9Tns 9Tns 9Tp11) < amax {Sp(92n—1,9Tn—1,9Tn), So(9Tn; 9Tn, gTnt1)}. 4)
If

max {Sb(gxnfl ) g.%'nfl,g.’ﬁn), Sb(gflln, gTn, gxn+])} = Sb(gl'n, 9T, gxn+1)7

then inequality (4) implies that

Sb(gxfm 9ZTn, gInJrl) < O‘Sb(gxna 9Tn, ganrl)'
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This is a contradiction since o < 1. Therefore, we must have
max {Sy(92n—1, 9Tn—1,9%n), So(9Tn, 9Tn; 9Tn+1)} = Sp(9Tn—1,9Tn—1, 9n).
Hence, inequality (4) implies that
Sb(92n, 9n, 9Tnt1) < aSp(gTn—1, 9Tn—1, gTn). ©)
Similarly,
Sp(9Tn—1, 9Tn—1,gTn) < ASp(9Tn—2, 9Tn—2, 9Tn—1). (6)
Using inequalities (5) and (6), we obtain
Sb(9%ns 9n, 9Tns1) < o Sy(gn—2, 9Tn—2, gTn—1).
By repeating this process, we get
Sb(9n, 9n, gni1) < " Sp(go, gro, g1).
Setting S,, = Sp(gTn, gTn, gTn+1), We obtain
Sp < a™Sy, neN. @)

We now show that the sequence { gz, } is a Cauchy sequence in g(X). Let m >
n > nyg, for some ng € N. Then by repeated use of (iii) in Definition 2.3, we
obtain

Sb(9%ns 9T, gTm)
< 8(Sb(9Tn, 9Tns 9Tn+1) + S6(9Tns 9Tn, gTni1) + So(9Tm, 9T, 9Tn+1))
= 25S8(9%n;s 9T, gTni1) + 8S6(9Tni1, 9Tns1, 9Tm)
< 258p(9%n, 9n, 9n+1) + {5 (29 (9Tn11, 9Tnt1, 9Tns2) + Sp(9Zms gTm, 9Tn12))}
= 2554(9n, 9Tn, 9n11) + 282 S0 (9Tn 11, 9011, 9n12) + 87 S6(92m, GTm, GTni1)
=258, +25%Sy 11+ 52S(gTni2, GTnia, GTm).
Using the same reasoning, it follows that

Sy(gns G0, gTm) < 28y + 252811 +258°Sp 0 + -+ 281G,

< 2sS8, + 2325n+1 + 253Sn+2 4
Using inequality (7), we get
Sy(9Tn, 9T, gTm) < 2508y + 2571 Sy + 253" 25y 4 - - -

=2sa" (1 + (as) + (as)?

1
= 2sa" < ) S0.
1 —as

T (as)+) S
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. 1 . .
Since a = — < 1, it follows that o™ — 0 as n — oco. Hence, letting n — oo, we

obtain
lim Sy(92n, 9%n, gTm) = 0.
n—oo

Hence, the sequence {gz,} is Cauchy in g(X). Because g(X) is complete, there
exists an element ¢ € g(X) such that gx,, — ¢. That is

lim gz, =q= lim fx, ;.
n—o0 n—oo

As q € g(X), there exists an element p € X with g(p) = ¢. We now aim to prove
that ¢ = f(p). For this purpose, consider

Sp(9Zn+1, gTn+1, ) = So(fn, f2n, [p)

< amax {Sy(9Tn, 9Tn, [Tn), Sp(9Tn, 9Tn, [2n), Sp(gp, gp, fP)}
= & (Sb(9Tn, 97n, fTn), So(9Tn, 90, frn), Sp(gp, g, D))

= amax {Sy(9n, gTn, 9Tn+1), So(gp, 90, fP)}
= & (Sp(92n, g0y 9Tnt1), So(9Tns 9Tn, 9Tn+1), Sp(gp, gps £1)) -

Since ¢(ty,ta,t3) > 0, for all ¢, tp, t3 > 0, it follows that

Sp(9Tn11, 9Tni1, fp) < amax {Sy(gTn, 9Tn, 9Tni1), Sp(gp, gp, fD)} -

Letting n — oo, we obtain

Su(q:q, fp) < amax {Sy(q,q,q), Sp(q,q, fp)) .

It implies that
Sb(‘]a q, fp) S OéSb(q, q, fp)

Therefore
(l - Oé)Sb(q, q, fp> S 0.

Since o < 1, we have (1 — ) > 0. Hence, it follows that Sy(q,q, fp) < 0.
However, by definition of S, we know that Sy(q, ¢, fp) > 0.Thus, Sy(q, q, fp) =
0. This implies that fp = ¢ = gp. This shows that p is a coincidence point of f
and g. Now, we claim that f and g have a unique coincidence point. Suppose, for
the sake of contradiction, that there is an another coincidence point, say r # p, of
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f and g. Consider

Se(gr, g7, gp) = Se(fr, fr, [p)
< amax {Sy(gr, gr, fr), Se(gr, gr, f1), Se(9p, gp, fP)}
— ¢ (Sp(gr, gr, fr), Sp(gr, gr, f1), Se(gp. gp, fD))
= amax {Sy(gr, gr, g7), Se(gr, gr, gr), Ss(9p, gp, 9p) }
— ¢ (Su(gr, gr, gr), Se(gr, gr, gr), Ss(9p, 9P, 9p))
= amax {0,0,0} — ¢(0,0,0)
=0.
Therefore, Sy(gr, gr, gp) < 0. However, by definition of S;, we know that
Sy(gr, gr,gp) > 0. Combining these inequalities, we obtain Sy(gr, gr, gp) = 0,
which implies that gr = gp. Hence, f and g have a unique coincidence point.

Furthermore, if f and g are weakly compatible, then Proposition 2.10 ensures that
f and g possess a unique common fixed point in X. O

Theorem 3.3. Let (X, Sy) be an Sy-metric space, and let f,g : X — X be two
mappings satisfying
1
So(fa, fy, f2) < 7 (Solgw, gz, f) + Su(9y, 9y, fy) + Su(92, 92, f2))

— ¢ (Sp(gz, gz, fx), Sp(gy, 9y, fy)) — ¥ (Su(gy, 9y, fy), Se(92, 92, f2)),

forall z,y,z € X, where ¢, : [0,00)> — [0, 00) are continuous functions such

that ¢(x,y) = 0ifand only if x = y and (x,y) = 0ifand only if x = y. Suppose
3

further that s is a real number satisfying 1 < s < > and that the following

conditions hold:

() f(X) S g(X);
(i) g(X) is complete.
Then f and g have a unique coincidence point in X. If f and g are weakly com-

patible, then f and g have a unique common fixed point in X.

Proof. Since f(X) C g(X), for any arbitrary xyp € X, we can find z; € X
such that f(z9) = g(x;). Proceeding similarly, for each x,, € X, we can find
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Zn+1 € X such that f(x,) = g(x,41). For sequence {gx,, }, consider
Sb(gxn) 9Tn, gwn+1) = Sb(f.’L'n,I, fnflv fxn)
1
< 4 (Sp(9Tn—1, 9Tn—1, fTn-1) + Sp(9Tn-1, 9Tn—1, fTn-1) + Sp(9%n, 9Tn, fTn))

— ¢ (Sp(92n—1, 9Tn—1, fXn—1), Sp(9Zn—1, 9Tn—1, fTn_1))
- ¢ (Sb(gxn—l y Tn—1, fmn—l)a Sb(gxm 9T, fxn))
1
=7 (28h(gTn—1,9%n—1,9Tn) + Sp(9Tn, 9Tn, gTni1))
— ¢ (Sb(gxnfl y 9Tn—1, gxn), Sb(gxnfl y9Tn—1, gxn))
— Y (Sp(9Tn—1,9%n—1,9%n), Sp(9Zn, 9Tn, gTni1)) -

Since ¢(t1, ) > 0 and ¥ (t1,t,) > 0 for all ¢1,%, > 0, we deduce that

1

Sb(g-rnagxn)gxfwrl) < Z (25b(9$n71,9$n—1ag$n) + Sb(gimgﬂ?mgxnﬂ)) .

Hence, we have
2
Sp(9Tn, 9T, gTni1) < ng(gwn—l,gacn—l,gwn)-

2
Letting o = 3 < 1, we obtain

Sp(9Zny GTn, GTns1) < @SH(gTn—1, gTn—1, 9Tn)- ®)

Similarly, we can show that

Sp(9ZTn—1, 9Tn—1, 9Tn) < aSp(9Tn—2, 9Tn—2, GTn—1). 9)
Using inequalities (8) and (9), we get

Sb(9%ns 9n, 9Tns1) < 0 Sy(gn—2, 9Tn—2, gTn—1).
Continuing this process, it follows that

Sb(9Tn; g, gTnt1) < " Sp(gzo, g0, gT1).

By setting S,, = Sp(gn, gTn, gTn+1), We obtain

Sn < a™Sp, n € N. (10)
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We now show that the sequence {gz,} is a Cauchy sequence in g(X). Let m >
n > ny, for some ng € N. Then by repeated use of (iii) in Definition 2.3, we
obtain

Sb(92n, 9Tn, gTm)

< 5 (So(9n, 9T, 9Tnt1) + Sb(9%n; 9Tn; gTn+1) + Sp(9Tms GTm, GTn41))

= 285y(9Tn, 9T, 9Tni1) + 555(9Tn11, 9Tni1, 9Tm)

< 2550(9%n; 9, gTnt1) + 5 {8 (29 (9%n+1, 941, 9Tn12) + Sp(9Tm; 9Tm, gTn12))}
= 2554(9Tn, G, 9Tni1) + 25286 (9Tni1, GTni1, 9Tns2) + 52S(9Tmy 9Tm, GTni1)
=258, +25°Sy 11 + 5°S(gTni2, GTnias GTm ).

Continuing in the same manner, we obtain

Sp(9Zns 9Tn, gTm) < 285, + 2325n+1 + 253Sn+2 4o 2gmnmlg
<288, +252Spi1 4+ 23S0 4o

Using inequality (10), we get

Sp(gZns §Tn, gTm) < 25a™Sy 4 252" 1Sy + 257" 28y + - - -

=2sa™ (1 + (as) + (as)?

1
= 2sa" < ) S0.
1 —as

. 2 . .
Since o = 3 < 1, it follows that o™ — 0 as n — oo. Hence, letting n — oo, we

T (as) +-) S

obtain

lim Sy(9Zn, 9%n, gTm) = 0.
n—,oo

Hence, the sequence {gz,,} is Cauchy in g(X). As g(X) is complete, there exists
an element ¢ € g(X) such that gz,, — ¢. That is

lim gz, =q= lim fx,_.
n—oo n—oo

Since ¢ € g(X), there exists an element p € X such that g(p) = ¢. We now aim
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to prove that ¢ = f(p). For this purpose, consider
Sp(9Tn41, 9Tn+1, fP) = So(fTn, fTn, fP)
< % (Sb(9n, g, fon) + Sp(92n; gTn, f2n) + Se(gp, gp, fP))
= ¢ (Sb(9Tn, 9, fTn), Sp(9Tn, gn, fTn))
— 1 (Sb(9%n, 9Tn, fn), Sb(gp, 9P, fP))
- 7 (256(9n, 920, gz ns1) + So(gp, gp, fP))

— & (Sp(9n, 9Tn, 9Tn11), Sp(9%n, 9Tn, GTn+1))
¢( (gmn7g$n7gxn+l> Sb(gpvgpa fp))
) >0

Since ¢(t1, t> and ¢ (t1,t) > 0 for all ¢1,t, > 0, it follows that

1
Sp(9Tni1, gTnt1, fp) < I (25y(9n, 9Tn, 9Tn+1) + Sp(gp, gp, ) -

Letting n — oo, we obtain

Sb(‘]a q, fp) S % (ZSb(qy q, Q) + Sb(Q) q, fp)> .

It implies that
3
1o0(¢,4,fp) <0

It follows that Sy(q, q, fp) < 0. However, we also have Sy(q, ¢, fp) > 0. There-
fore Sy(q,q, fp) = 0, which implies that fp = ¢ = gp. This shows that p is
a coincidence point of f and g. Now, we claim that f and g have a unique co-
incidence point. Suppose, for the sake of contradiction, that there is an another

coincidence point, say r # p, of f and g. Consider
Sv(gr, gr, gp) = Se(fr, fr, fp)

< % (Sp(gr, gr, fr) + Sp(gr, gr, fr) + Se(gp, gp, [P))

— ¢ (Splgr, gr, fr), Se(gr, gr, fr)) — ¥ (Se(gr, gr, f1), Sp(9p, 9p, D))

1
=7 (Sp(gr, gr, gr) + Sp(gr, gr, gr) + Sp(gp, gp, gp))

— ¢ (Sp(gr, gr, gr), Sp(gr, gr, gr)) — ¥ (Se(gr, gr, g7), Se(gp, gp, 9p))

(0) = ¢(0,0) —4(0,0)

S Aim
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Therefore, Sy(gr,gr,gp) < 0. However, we know that Sy(gr,gr,gp) > O.
Combining these inequalities, we obtain Sy(gr, gr, gp) = 0, which implies that
gr = gp. Hence, f and g have a unique coincidence point. Furthermore, if f
and g are weakly compatible, then it follows from Proposition 2.10 that f and g
possess a unique common fixed point in X. o
Theorem 3.4. Let (X, Sy) be an Sy-metric space, and let f,g : X — X be two

mappings. Suppose that there exists a real number o with) < a < —, s > lisa
s

given real number such that for all x,y, z € X,

Sb(fl‘) fy) fZ) S amax {Sb(ng g, fx)v Sb(gya qY, fy)a Sb(gz) gz, fZ)}
— ¢ (Sp(gz, 9z, fx), Sp(gy, 9y, fy)) — ¥ (Su(9y, 9y, fy), Se(92, 92, f2)),

where ¢,1) : [0,00)% — [0, 00) are continuous functions such that ¢(x,y) = 0 if
and only if © = y and Y (x,y) = 0 ifand only if x = y. If

@) f(X) € g(X);
(i) g(X) is complete.

Then f and g have a unique coincidence point in X. If f and g are weakly com-
patible, then f and g have a unique common fixed point in X.

Proof. Since f(X) C g¢(X), for any arbitrary zy € X, there exists x; € X
such that f(xg) = g(z1). Continuing in this way, for any x,, € X, we can find
ZTnt1 € X sothat f(z,) = g(xn+1). For sequence {gz,, }, consider
Sp(92n, 9Tn; gTnt1) = Sp(fTp—1, fa—1, f2n)
< amax {Sp(9Tn—1,9Tn—1, fTn-1), Sp(9Zn—1, 9Tn—1, fTn—1), S6(9Tn, gTn, frn)}
= ¢ (Sb(9Tn—1, 9Tn—1, fTn-1), Sp(9Tn—1, gTn—1, fTn—1))
= (Sb(9n—1, 9Tn—1, fTn—1); So(9Tn, gTn, fn))
= aomax {Sy(9Tn—1, 9Tn—1, 9%n), So(9Tn, 9n, 9Tn+1)}
= ¢ (Sb(9Tn—1, 9Tn—1,9n), Sp(9Tn—1, gTn—1, gn))
= 1 (S6(9Tn—1, 91, 9n), So(9Tn, G2n, gTni1)) -
Since ¢(t1,t2) > 0 and ¥ (t1,t2) > 0 for all ¢1,%, > 0, it follows that
Sb(9n, 9, gn+1) < amax {Sy(9Tn—1,9Tn—1,92n), So(9Tn, 9T, gTns1)}. (11)
If

max {Sy(9Tn—1,9%n—1,9Tn), Sp(9%n, 9Tn, 9Tn+1)} = Sp(9Tn, 9Tn, gTni1),
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then inequality (11) implies that

Sp(g2n, 9Tn, 9Tn11) < @Sp(gTn, 9Tn, 9Tn11)-

This is a contradiction since o < 1. Therefore, we must have

max {Sy(9Tn—1, 9Tn—1, 9Tn), Sp(9%n, 9Tn, 9Tn+1)} = Sp(9Tn—1,9Tn—1,9%n).

Hence, inequality (11) implies that

Sp(9%n, gTn, gTni1) < @Sp(GTn—1, 9Tn—1, 9Tn). (12)

Similarly,

Sb(gxn—la 9Tn—1, gxn) < aSb(gxn—L gTn—2, gwn—l)- (13)

Using inequalities (12) and (13), we obtain

Sp(9Tn, Gy gTnt1) < @ Sp(9Tn—2, GTn—2, 9Tn_1).

Proceeding by induction, we get
Sb(9Tn; 9T, gTnt1) < " Sp(gzo, 9o, gT1).
By setting S,, = Sy(gxn, gTn, gTn+1), We obtain
Sn < a™Sp, n € N. (14)

We now show that the sequence {gz, } is a Cauchy sequence in g(X). Let m >
n > ng, for some ny € N. Then by repeated use of (iii) in Definition 2.3, we
obtain

Sb(9ns gTn, 9Tm)

< s (So(92n, 9Tn, 9Tni1) + So(9Zn, 9Tn; 9Tni1) + So(9Zm, 9Tm, 9Tn11))

= 2555(9Tns 9Tn, gTn+1) + 8Sb(9Tn+1, 9Tn+1, 9Tm)

< 2585(92n, 9Tn, 9Tni1) + 5 {5 (296 (92n i1, 9Tni1, 9Tni2) + So(9%m, 9Tm, 9Tn12))}
= 255,(9%n, 9T, 9Tns1) + 25°Sp(9Tn415 9Tnt1, 9Tns2) + 8 Sb(9Tms GTm, GTn41)
=255, +25°Sy 11 + 52S(gTni2, GTnaas GTm ).

Continuing in the same manner, we obtain

Sp(9Zny 9Tn, gTm) < 285, + 2325n+1 + 253Sn+2 44 2smlg
< 258Sp +252Sp1 + 25 Spao + -
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Using inequality (14), we get
So(gTn, T, gTm) < 2sa”Sp + 252" 1Sy + 253" 2 S + - - -
=2sa" (1 + (as) + (as)* + (as)® +--+) So

1
= 2sa” ( ) So.
1—as

. 1 . .
Since a = — < 1, it follows that o™ — 0 as n — co. Hence, letting n — oo, we

obtain
lim Sy(9xn, gTn, g2m) = 0.

n—oo

Therefore, {gz,} is a Cauchy sequence in g(X). Since g(X) is complete, there
exists ¢ € g(X) such that gz, — ¢. That is

lim gz, =q= lim fx,_.
n—oo n—oo

As g € g(X), there exists p € X such that g(p) = ¢. We now aim to prove that
q = f(p). For this purpose, consider
Sp(9Tn+1, 9Tn+1, fP) = So(fTn, fTn, fp)
< amax {Sy(g2n, 9n, fTn), So(g2n, gn, fxn), Su(gp, gp, fp)}
— ¢ (Sb(9n, 9n, fn), Sp(9Tn, 92n, f1n))
= (Sb(92n, gn, fn), Se(gp, gp, fP))
= amax {Sy(92n, 9Tn, 9Tn+1), Sp(9p, gp, fP)}
— ¢ (Sb(9n, 9T, gTn+1), S6(9Tn, 9Tn, gTn11))
= (Sb(92n, 9Tn, gTnt1), Se(gp, gp, fp)) -

Since ¢(ty,t2) > 0and ¢(t1,t2) > 0 for all ¢y, ¢y, t3 > 0, it follows that

Sp(9Zn+1, 9Tns1, fp) < amax {Sy(92n, 9Tn, 9Tn11), Sp(gp, 9, fP)} -

Letting n — oo, we obtain

Su(q,q, fr) < amax {Sy(q,q,9), S(q,q, fP)) -

It implies that
Sb(qa q, fp) S OéSb(q, q, fp)

Therefore
(1 - Oé)Sb(q, q, fp> S 0.
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Since o < 1, we have (1 — ) > 0. Hence, it follows that Sy(q,q, fp) < 0.
However, by definition of Sy, we know that Sy(q, ¢, fp) > 0. Thus, Sy(q, g, fp) =
0. This implies that fp = ¢ = gp. This shows that p is a coincidence point of f
and g. Now, we claim that f and g have a unique coincidence point. Suppose, for
the sake of contradiction, that there is an another coincidence point, say r # p, of
f and g. Consider

Sv(gr, gr, gp) = Sp(fr, fr, p)
< amax {Sy(gr, gr, fr), Sp(gr, gr, fr), Sv(gp, gp, fP)}

= @ (Sp(grs gr, fr), Se(gr, gr, fr)) — ¥ (Se(gr, gr, f), Se(gp, gp, [D))
= amax {Sy(gr, g, gr), Sp(gr, g7, g7), Sp(gp, 9P, 9P) }

= & (Sp(gr, gr, gr), Sp(gr, gr, gr)) — ¥ (Se(gr, gr, g7), Se(gp; 9P, 9p))
= amax {0,0,0} — ¢(0,0) — 1(0,0)
=0.

Therefore, Sy(gr,gr,gp) < 0. However, we know that Sy(gr,gr,gp) > O.
Combining these inequalities, we obtain Sy(gr, gr, gp) = 0, which implies that
gr = gp. Hence, f and g have a unique coincidence point. Furthermore, if f
and g are weakly compatible, then Proposition 2.10 guarantees that f and g have
a unique common fixed point in X. i

1
Example 3.5. Let X = {0, 2} and define the Sp-metric Sp : X X X x X — [0, 00)
by
Sp(x,y,2)=|lr—yl+|ly—z|+|z—z forallz,y,ze X.

Now, define the mappings f,g: X — X by
flz) = %, g(x) = g, forall z € X,

and let
rT+y+z

3
16 9 (l’,y,Z) € [0’ OO) :

d)(x’ y7 Z) =

1 1
Then f(X) = [O, } C [O, 4} = g(X) and g(X) is a closed interval in R and
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hence complete. Now, for z,y, z € X, we have

Solfa, fy. f2) = 5 (5.5:3)

444
ZE_Q‘ )Q_E‘ ‘E_f
‘8 sl I8 T8l Tz T3
1
=gllz—yl+ly—zl+[z—al}. (15)

Let us suppose that z > y > z. Then

e —yl+ly—2l+]z—2l=(@—-y) +y—2) — (2 —2) =2z —2).

1 1
Clearly, on [O, 2}, 2(x — z) is maximum when x = 3 and z = 0 and it is
1
2 <2 - 0> = 1. That is, the maximum value of |x — y| + |y — 2| + |z — x| on
1
0, 2] is 1. Thus, equation (15) implies that Sy(fz, fy, fz) attains its maximum

1 1
lue - =
value 2 on [0, 2] Now,

Sulga, g, fx) = S (

EEE)

2'2°8

_’£ E“‘E E‘Jrf L
2 2 2 8

8 2
(-3

_ 3
==

In a similar manner, it can be shown that

3z

3
Sb(gy,gy,fy)ZZy and Sb(gz,gz,fZ)ZZ-
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Therefore,

% (Sb(gz, gz, fx) + Sp(gy, 9y, fy) + Sb(9z, 92, f2))
- d) (Sb(g$agxa fx)a Sb(gyagy7 fy)a Sb(gz,gz, fZ))

13z 3y 3z 3z 3y 3z
_4<4+4+4) ¢<4’4’4>

3 3y 3
4 "4 "4

3(+ + 2)
=—(z z) —
y 16

16

9
:a(x—l—y—i—z). (16)
. 9 1. 27
The maximum value of 6—4(90 +y+2z)on |0, ARETE Therefore, from (15) and
(16) we have

Sy(fz, fy, fz) < % (So(gz, gz, fr) + Sp(gy, gy, fy) + Sp(92, 92, [ 2))
— ¢ (Sp(gz, gz, fx), Sp(gy, 9y, fy), Se(92, 92, f2)) . (AT)

Therefore, by Theorem 3.1, the mappings f and g have a unique coincidence point
in X, which is = 0. Moreover, since fg(0) = ¢g(0) = 0 = f(0) = ¢gf(0), the
mappings f and g are weakly compatible. Therefore, by Theorem 3.1 f and g
have a unique common fixed point x = 0 € X.

4 Conclusion

In this paper, we have established some common fixed point theorems for a pair
of weakly compatible mappings within the framework of Sy-metric spaces. Our
results extend and generalize several existing fixed point theorems. By introducing
generalized contractive conditions for weakly compatible self mappings, we have
shown that such mappings admit a unique common fixed point.
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