
e-Journal of Analysis and Applied Mathematics2018(1)(2018), 1–10
DOI 10.2478/ejaam-2018-0001 © Sciendo 2018

Stable difference scheme for a nonlocal boundary
value heat conduction problem
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Abstract. In this paper, a new finite difference method to solve nonlocal boundary value
problems for the heat equation is proposed. The most important feature of these problems
is the non-self-adjointness. Because of the non-self-adjointness, major difficulties occur
when applying analytical and numerical solution techniques. Moreover, problems with
boundary conditions that do not possess strong regularity are less studied. The scope
of the present paper is to justify possibility of building a stable difference scheme with
weights for mentioned type of problems above.
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1 Introduction

Currently, the attention of many scientists is attracted tomathematical physics
problems with nonlocal (non-classical) additional conditions. The relevance of
the study of these problems is presented in number of physical applications in the
field of electrostatics, electrodynamics, the theory of elasticity, plasma physics.
The study of numerical methods for solving problems with nonlocal additional
conditions, which include finite-difference schemes, is not less important.

It should be noted the absence of any universal methods of research as differ-
ential problems with nonclassical conditions and also difference schemes approxi-
mating them. There are fundamental difficulties for the use of traditional methods,
such as the potential method, the method of separation of variables, the maximum
principle and the method of energy inequalities. This property of nonclassical
problems is related to, first of all, huge freedom of choice and existence of variety
of additional conditions. It makes sense to allocate some class of nonlocal prob-
lems of mathematical physics and corresponding differenceschemes for research.
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The problems with boundary conditions that do not possess strong regularity
are less studied. One of the first problems of this type, knownas a problem of
Samarskii-Ionkin, was investigated by N. I. Ionkin and A. V.Gulin [4], A. Yu.
Mokin [5] and others. More specific classes of problems of difference methods
were illustrated in the A. Ashyralyev papers [2,3].

In this paper, the family of boundary value problems for a heat equation and
finite difference schemes approximating these problems areconsidered. The pe-
culiarity of the initial-boundary value problems is a special choice of the bound-
ary conditions, which are not strengthened regular. The corresponding difference
schemes do not have the property of self-adjointness.

2 Statement of the problem

In Ω = {(x, t), 0 < x < 1, 0 < t < T}, we consider a problem of finding a
solutionu(x, t) of the heat equation

ut(x, t)− uxx(x, t) = f(x, t), (1)

satisfying the initial condition

u(x,0) = φ(x), 0 ≤ x ≤ 1, (2)

and the boundary conditions of the general form
{
a1ux(0, t) + b1ux(1, t) + a0u(0, t) + b0u(1, t) = 0,

c1ux(0, t) + d1ux(1, t) + c0u(0, t) + d0u(1, t) = 0.
(3)

The coefficientsak, bk, ck, dk, (k = 0,1) of the boundary conditions are real num-
bers, andφ(x), f(x, t) are given functions.

Applying Fourier method for solving problem (1)-(3) leads to a spectral prob-
lem for a operator defined by differential expression

l(y) = −y′′(x), 0< x < 1

and boundary conditions
{
a1y

′(0) + b1y
′(1) + a0y(0) + b0y(1) = 0,

c1y
′(0) + d1y

′(1) + c0y(0) + d0y(1) = 0.
(4)

The boundary conditions (4) of this operator are called regular [5], if one of the
following three conditions holds:

a1d1 − b1c1 6= 0;
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a1d1 − b1c1 = 0, |a1|+ |b1| > 0, a1d0 + b1c0 6= 0;

a1 = b1 = c1 = d1 = 0, a0d0 − b0c0 6= 0.

The regular boundary conditions are strongly regular in thefirst and third cases,
and in the second case if the following condition holds:

a1c0 + b1d0 6= ±[a1d0 + b1c0].

In [6], the following lemma was proved.

Lemma 2.1.If the boundary conditions are regular but not strongly regular, then
they can always be reduced to the form

{
a1ux(0, t) + b1ux(1, t) + a0u(0, t) + b0u(1, t) = 0,

c0u(0, t) + d0u(1, t) = 0,

where|a1|+ |b1| > 0, of one of the following four types:

a1 + b1 = 0, c0 − d0 6= 0,

a1 − b1 = 0, c0 + d0 6= 0,

c0 − d0 = 0, a1 + b1 6= 0,

c0 + d0 = 0, a1 − b1 6= 0.

In this paper, we consider the boundary value problems of type II. The boundary
value problems of type I is considered in [1]. We know thata1 − b1 = 0, and
|a1|+ |b1| > 0. Therefore, without loss of generality we can assumea1 = b1 = 1.
Sincec0 + d0 6= 0, also without loss of generality we assume thatc0 + d0 = −1.
For convenience, we denotec0 = c, sod0 = 1− c.

Therefore, the problem of type II can be formulated in the following form:
In Ω = {(x, t),0 < x < 1, 0 < t < T}, find the solution of the heat equation
(1), satisfying the initial condition (2), and the boundaryconditions of type II

{
ux(0, t) + ux(1, t) + au(0, t) + bu(1, t) = 0,

cu(0, t) + (1− c)u(1, t) = 0.
(5)

Here, coefficientsa, b, c of boundary conditions are arbitrary real numbers.
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3 Reduction to the sequential solution of two problems

To solve this problem, we introduce the auxiliary functions

v(x, t) =
[u(x, t)− u(1− x, t)]

2
, (6)

w(x, t) = u(x, t)− [1− (1− 2c)(2x− 1)]v(x, t). (7)

Note that the functionv(x, t) is odd on the interval 0< x < 1, and it is an
odd part of the functionu(x, t), and functionw(x, t) is not an even part of the
functionu(x, t), although it is even. This follows from the fact thatw(x, t) can be
represented in the form:

w(x, t) =
1
2
[u(x, t) + u(1− x, t)] + (1− 2c)(2x− 1)v(x, t).

From (7) it is easy to see that if we find the functionsv(x, t) andw(x, t), then
the solution of original problem can be restored by the formula

u(x, t) = w(x, t) + [1− (1− 2c)(2x− 1)]v(x, t). (8)

In representation (8), the first term is even on 0< x < 1 and the second term at
1− 2c 6= 0 is neither even nor odd.

It is easy to make sure that the functionv(x, t) is a solution of the initial bound-
ary problem

vt(x, t)− vxx(x, t) = f0(x, t), (9)

v(x,0) = φ0(x), 0 ≤ x ≤ 1, (10)
{
vx(0, t) + [a(1− c)− bc]v(0, t) = 0,

vx(1, t) − [a(1− c)− bc]v(1, t) = 0,
0 ≤ t ≤ T, (11)

where

f0(x, t) =
1
2
[f(x, t) − f(1− x, t)], φ0 =

1
2
[φ(x)− φ(1− x)]. (12)

First, we find the solutionv(x, t) of problem (9)-(11). Then, we obtainw(x, t) as
a solution of the following problem:

wt(x, t)− wxx(x, t) = f1(x, t), (13)

w(x,0) = φ1(x), 0 ≤ x ≤ 1, (14)
{
w(0, t) = 0,

w(1, t) = 0,
0 ≤ t ≤ T, (15)
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where

f1(x, t) = f(x, t) − [1− (1− 2c)(2x− 1)]f0(x, t)− 4(1− 2c)vx(x, t), (16)

φ1(x) = φ(x)− [1− (1− 2c)(2x− 1)]φ0(x). (17)

From direct verification of (12) and (17), it is easy to see that if the initial data
φ(x) of problem (1), (2), (5) satisfies the necessary (a classic and well-known)
compatibility conditions, then the initial dataφ0(x) andφ1(x) also satisfy the
necessary compatibility conditions of their respective problems.

Thus, the solution of the problem of type II (1), (2), (5) is reduced to the suc-
cessive solution of two problems with homogeneous boundaryconditions of Sturm
type on the spatial variable:
(i) First, forv(x, t) we need to obtain the solution of initial boundary problem (9) -
(11) with homogeneous boundary conditions of Sturm type on the spatial variable,
(ii) Second, by the obtained value ofv(x, t), we need to solve the initial bound-
ary problem (13) - (15) with homogeneous boundary conditions of the Dirichlet
conditions on the spatial variable to getw(x, t).

Therefore, the main results about existence, stability andconvergence of numer-
ical solution of the problem of type II (1), (2), (5) in the classical and generalized
sense follow from the well-known classical results in the field of numerical meth-
ods for the solution of the heat equation with boundary conditions of Sturm type.

4 Study of problems by means of schemes with weights

In this section, we directly give the main result: the study of problems by means of
schemes with weights. Schemes with weights for the heat equation were described
in [6], where its error of approximation and the necessary conditions of stability
were investigated. For completeness, these results are presented in more detail.

We introduce a gridδhτ = δh × δτ , where

δh = {xi = ih, i = 0,1, ...,N, Nh = 1},

δτ = {tn = nτ, n = 0,1, ...,K, Kτ = T}

and denote

yni = y(xi, tn), ynt,i =
yn+1
i − yni

τ
, ynxx,i =

yni+1 − 2yni + yni−1

h2 .

Differential problem (9) is replaced on the gridδhτ by a difference problem

ynt,i = σyn+1
xx,i +(1−σ)ynxx,i+F

n
i , i = 1,2, ...,N, n = 0,1, ...,K −1, (18)
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whereσ is a real number andFn
i is a grid function, which replaces the function

f0(x, t). We need to add difference form of initial and boundary conditions

yn1 − yn0
h

+ [a(1− c)− bc]yn0 =
ynN − ynN−1

h
− [a(1− c)− bc]ynN = 0, (19)

wheren = 1,2, ...,K − 1, and

y0
i = φ0(xi), i = 1,2, ...,N. (20)

The difference problem (18)-(20) is called a scheme with weights for the heat
equation. The accuracy of the difference scheme is characterized by an errorzni =
yni − v(xi, tn). For this error we have the following problem:

znt,i = σzn+1
xx,i + (1− σ)znxx,i + ψn

i i = 1,2, ...,N, n = 0,1, ...,K − 1, (21)

zn1 − zn0
h

+[a(1−c)−bc]zn0 =
znN − znN−1

h
−[a(1−c)−bc]znN = 0, z0

i = 0, (22)

wheren = 1,2, ...,K − 1 andψn
i = −vnt,i + σvn+1

xx,i + (1− σ)unxx,i + Fn
i is the

error of approximation schemes (18) - (20) in the solution ofproblem (1). It has
been shown that from suitable choice ofFn

i we can take following relations





ψn
i = O(τ2 + h4), if σ = σ∗ =

1
2 − h2

12τ ,

ψn
i = O(τ2 + h2), if σ = 1

2,

ψn
i = O(τ + h2), if σ 6= σ∗, σ 6= 1

2.

We obtain estimates of the solution of the difference problem (18)-(20) through
an initial datay0

i and a right-hand side ofFn
i , expressing the stability of the scheme

with respect to the initial data and the right-hand side. Theerror estimateszni
through approximation errorψn

i , describing the convergence and accuracy of the
scheme (18)-(20), will immediately follow from these estimates. It is known that
the solutionyn+1

i of problem (18)-(20) can be written as

yn+1
i =

N∑

k=1

[
qkck(tn) +

τ

1+ στλk
F̂k(tn)

]
µk(xi), (23)

whereqk = 1−(1−σ)τλk

1+στλk
. Here,ck(tn), F̂k(tn) are Fourier coefficients of functions

y(xi, tn),F (xi, tn), respectively;λk are eigenvalues and{µk}Nk=0 are an orthonor-
mal basis of eigenfunctions of the operator A:

(Ay)i = −yxx,i, i = 1,2, ...,N,
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yn1 − yn0
h

+ [a(1− c)− bc]yn0 =
ynN − ynN−1

h
− [a(1− c)− bc]ynN = 0.

We require that 1+ στλk > 0, k = 1,2, ...,N.
Denoting

yn+1
i =

N∑

k=1

qkck(tn)µk(xi),

ỹn+1
i =

N∑

k=1

τ

1+ στλk
F̂k(tn)µk(xi),

we findyn+1
i = yn+1

i + ỹn+1
i .

We estimate norms ofyn+1 andỹn+1 separately. In view of the orthonormality
of basisµk, we get

||yn+1||2 =
N∑

i=1

(
yn+1
i

)2
h =

N∑

k=1

q2
k (ck(tn))

2

and hence

||yn+1|| ≤

(
N∑

i=1

(ck(tn))
2

) 1
2

max
1≤k≤N

|qk| = ||yn|| max
1≤k≤N

|qk|.

It requires that the condition

|qk| ≤ 1, k = 1, ...,N (24)

is held. It is easy to see that (24) is equivalent to

σ ≥
1
2
−

1
τλN

, (25)

whereλN is a largest eigenvalue of the operator A.
Note that from (25), the inequality

1+ στλk ≥
τλk

2
> 0

for anyk = 1,2, ...,N follows, i.e., the inequality that we need.
So, if (25) holds, then the estimate

||yn+1|| ≤ ||yn|| (26)
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is valid. Essentially, this estimate means that scheme (18)-(20) is stable with re-
spect to the initial data. Indeed, if in equation (18)Fn

i ≡ 0, thenyn+1
i = yn+1

i and
from (26), we obtain

||yn+1|| ≤ ||yn|| ≤ ||yn−1|| ≤ ... ≤ ||y0||.

It means that scheme (18)-(20) is stable with respect to the initial data in the norm

||y|| =

(
N∑

i=1

hy2
i

) 1
2

. (27)

So, we reach to the following conclusion. If parameters (18)-(20) of the scheme
are connected by inequality (25), then the scheme is stable with respect to the
initial data and for anyy0 ∈ H, the estimate

||yn+1|| ≤ ||y0||, n = 0,1, ...,K − 1

is valid for solving problem (18) (forFn
i ≡ 0). Here, the norm||y|| is determined

in accordance with (27).
Now, we show the stability on the right-hand part and the convergence of the

first problem. To evaluate the functioñyn+1, we strengthen the condition (18) and
it requires that the inequality holds

σ ≥
1
2
−

(1− ε)

τλN
(28)

with constantε ∈ (0,1). Thenσ ≥ 1
2 − (1−ε)

τλk
and for anyk = 1,2, ...,N, we

obtain

1+ στλk ≥
τλk

2
+ 1−

(1− ε)λk
λN

> 1−
(1− ε)λN

λN
= ε > 0,

i.e., 1+ στλk ≥ ε > 0. From the expansion

||ỹn+1||2 =

N∑

k=1

τ2

(1+ στλk)
2

(
F̂k(tn)

)2
≤
τ2

ε2

N∑

k=1

(
F̂k(tn)

)2
,

we obtain
||ỹn+1|| ≤

τ

ε
||Fn||. (29)

If σ ≥ 0, then condition (28) becomes unnecessary, since 1+ στλk ≥ 1 and
estimate (29) holds withε = 1. From the triangle inequality

||yn+1|| ≤ ||yn+1||+ ||ỹn+1||
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and estimates (26), (29) we obtain that the inequality

||yn+1|| ≤ ||yn||+
τ

ε
||Fn|| (30)

is valid for n = 0,1, ...,K − 1. Summing of (30) with respect ton leads to an
estimate

||yn+1|| ≤ ||y0||+ τ

n∑

j=0

τ ||F j|| (31)

and it means that problem (18) - (20) is stable with respect tothe initial data and
the right-hand part. From (31), taking into account the condition τn ≤ T , we
obtain

||yn+1|| ≤ ||y0||+
T

ε
max

0≤j≤n
||F j ||. (32)

So, if condition (28) holds withε ∈ (0,1) then scheme (18)-(20) is stable with
respect to the initial data and provides the validity of the estimate. Ifσ 6= 0 and
condition (25) holds, then (32) is valid withε = 1.

The convergence of scheme (18)-(20) follows from (32) and the approximation
requirements. For problem (21), the estimate of (32) takes the form

||zn+1|| ≤
T

ε
max

0≤j≤n
||ψj ||.

To solve the problem (13)-(15) the difference scheme and theestimate of its
convergence are constructed similarly. In both cases the weight σ is the same. We
do not stop here on these details. We give the final result:||zn+1|| has the same
order of magnitude as the error of approximation. In particular, for

σ = σ∗ =
1
2
−

h2

12τ
,

Fn
i = f

(
xi, tn+ 1

2

)
+
h2

12
f ′′
(
xi, tn+ 1

2

)
+O

(
τ2 + h4) ,

we have||ψj || = O
(
τ2 + h4

)
, the stability condition (28) holds withε = 2

3.
Therefore,||zn+1|| = O

(
τ2 + h4

)
, that is, the scheme has the second order

accuracy with respect toτ and the fourth order accuracy with respect toh. If

σ = 1
2 andFn

i = f
(
xi, tn+ 1

2
+O

(
τ2 + h4

))
, then the stability condition holds

for all τ and h and ||zn+1|| = O
(
τ2 + h2

)
. For other values ofσ we have∣∣|zn+1

∣∣ | = O
(
τ + h2

)
, if (28) holds withε ∈ (0,1) or if σ 6= 0 and (25) holds.
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