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1 Introduction

Fractional differential equations are a natural generalization of ordinary differen-

tial equations. They can describe many phenomena in various fields of science and

engineering such as control, porous media, electrochemistry, etc. It has been es-

tablished that, in many situations these models provide more suitable results than

analogous models with integer derivatives. As a consequence, the subject of frac-

tional differential equations is gaining much importance and attention. For details,

see [1 − 6, 8] and references therein.

It should be noted that most of the papers and books on fractional calculus are

devoted to the solvability of linear initial value fractional differential equation in

terms of special functions [20, 25]. Recently, there are some papers dealing with

the existence and multiplicity of solutions or nonnegative solutions of nonlinear

initial value fractional differential equation by the use of techniques of nonlinear

analysis of such fixed point theorems.

For example, Zhoujin [9] considered the fractional differential equation

cDαu (t) + f(t, u(t),cDβ
a+
u (t)) = 0, 0 < t < 1, 3 < α ≤ 4,

u(0) = u′(0) = u′′ (0) = 0, u(1) = u(ξ), 0 < ξ < 1,

where cDα denotes the Caputo’s fractional derivative, β > 0, α − β ≥ 1. The

existence results are derived by means of Schauder’s fixed-point theorem.
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Liang and Zhang [22] studied the existence and uniqueness of positive solutions

by properties of the Green function, the lower and upper solution method and fixed

point theorem for the fractional boundary value problem

Dq
0+
u (t) + f(t, u(t)) = 0, 0 < t < 1,

u(0) = u′(0) = 0, u′(1) =
m−2
∑

i=1

βiu
′(ζi),

where 2 < q ≤ 3 and Dq
0+

is the Riemann-Liouville fractional derivative.

In [27], Mujeeb studied existence and multiplicity results by means of the Guo-

Krasnosel’skii fixed point theorem, for a coupled system of nonlinear nonlocal

boundary value problems for higher order fractional differential equations of the

type

cDq
0+
u (t) = λa (t) f(u(t), v(t)), cDq

0+
u (t) = µb (t) g(u(t), v(t)),

u′(0) = u′′ (0) = u′′′ (0) = ... = u(n−1) (0) = 0, u(1) = ξ1u(η1),

v′(0) = v′′ (0) = v′′′ (0) = ... = v(n−1) (0) = 0, v(1) = ξ2u(η2),

where λ, µ > 0, n − 1 < α, β ≤ n for n ∈ N; ξi, ηi ∈ (0, 1) for i = 1, 2 and

Dq
0+

is the Caputo’s fractional derivative.

Ahmad et al. [2] studied the nonlinear fractional differential equation with non-

local boundary value

cDq
0+
u (t) = f(t, u(t)), 0 < t < 1,

x(0) = x′(0) = x′′ (0) = ... = x(m−2) (0) = 0, x (1) = ax (η) ,

in which q ∈ (m− 1,m] ,m ∈ N,m ≥ 2. Existence results are based on the

contraction mapping principle and Krasnoselskii’s fixed-point theorem.

Motived by all of the works above, in this work, we consider the existence

and uniqueness of nonnegative solutions of boundary value problem for nonlinear

fractional differential equation

cDq
a+
u (t) = f(t, u(t),cDσ

a+u (t)), 0 < t < 1,

u(0) = u′′(0) = 0, u′(η) = αu′′(1), (1)

where f : [0, 1] × R × R → R is a given function, 2 < q < 3, 0 < σ < 1,
0 < η < 1 and cDq

a+
denotes the Caputo’s fractional derivative.

We remark that the Caputo fractional derivative is more suitable than the usual

Riemann–Liouville derivative for the applications in several engineering problems
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due to the fact that it has better relations with the Laplace transform and because

the differentiation appears inside instead of outside of the integral, so to alleviate

the effects of noise and numerical differentiation (see [23, 29, 30]). The rest of

paper is organized as follows. In Section 2, we cite some definitions and lemmas

needed in our proofs. Section 3 treats the existence and uniqueness of solution

by using Banach contraction principle, Leray Schauder nonlinear alternative. Sec-

tion 4 is devoted to prove the existence of nonnegative solutions with the help of

Guo-Krasnoselskii theorem. Last, we give some examples illustrating the previous

results.

2 Preliminaries and Lemmas

In this section we present some lemmas and definitions from fractional calculus

theory, see [22], which will be needed throughout the paper.

Definition 2.1. If g ∈ C [0, 1] and 0 < α, then the Riemann-Liouville fractional

integral is defined by

Iαa+g (t) =
1

Γ (α)

t
∫

α

g (s)

(t− s)1−α
ds. (2)

Let α ≥ 0, n = [α] + 1. If g ∈ Cn [a, b] then the Caputo fractional derivative of

order α of g defined by

cDα
a+g (t) =

1

Γ (n− α)

t
∫

α

g(n) (s)

(t− s)α−n+1
ds (3)

exists almost every where on [a, b] ([α] is the entire part of α).

Lemma 2.2. Let α, β ≥ 0 and n = [α] + 1, then the following relation holds:

cDα
0+t

β−1 =
Γ (β) tβ−α−1

Γ (β − α)

c

Dα
0+t

k = 0, k = 0, 1, 2, ..., n − 1. (4)

Lemma 2.3. [18] For α ≥ 0 and g (t) ∈ C [0, 1], the homogeneous fractional

differential equation
cDα

a+g (t) = 0 (5)

has a solution

g (t) = c1 + c2t+ c3t
2 + ...+ cnt

n−1, (6)

where ci ∈ R, i = 0, ..., n and n = [α] + 1.
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Denote by L1 ([0, 1] ,R) the Banach space of Lebesgue integrable functions

from [0, 1] into R with the norm ‖y‖ =
1
∫

0

|y (t)| dt.

The following lemmas give some properties of Riemann-Liouville fractional

integrals and Caputo fractional derivative.

Lemma 2.4. Let p, q ≥ 0, f ∈ L1 [a, b] . Then,

Ip
0+
Iq

0+
f (t) = Ip+q

0+
f (t) = Iq

0+
Ip

0+
f (t) (7)

and
cDq

0+
Iq

0+
f (t) = f (t) ,∀t ∈ [a, b] . (8)

Lemma 2.5. [23] Let β > α > 0. Then, the formula cDα
0+I

β
0+
f (t) = Iβ−α

0+
f (t)

holds almost everywhere on t ∈ [a, b] for f ∈ L1 [a, b] and it is valid at any point

x ∈ [a, b] if f ∈ C [a, b] .

Now, we give solution of an auxiliary problem.

Lemma 2.6. Let 2 < q < 3, 0 < σ < 1 and y ∈ C [a, b] . The unique solution of

the fractional boundary value problem







cDq
a+
u (t) = y (t) , 0 < t < 1,

u (0) = u′′ (0) = 0, u′ (η) = αu′′ (1)
(9)

is given by

u (t) =
1

Γ (q − 2)





1
∫

0

G (t, s) y (s) ds−
t

q − 2

η
∫

0

(η − s)q−2 y (s) ds



 , (10)

where

G (t, s) =



















(t− s)q−1

(q − 2) (q − 1)
+

tα

(1 − s)3−q
, s ≤ t,

tα

(1 − s)3−q
, s > t.

(11)

Proof. Applying Lemmas 2.3 and 2.4 to (9), we get

u (t) = Iq
0+
y (t) + c1 + c2t+ c3t

2. (12)
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Differentiating both sides of (12) and using Lemma 2.5 it yields

u′ (t) = Iq−1

0+
y (t) + c2 + c3t,

u′′ (t) = Iq−2
0+

y (t) + c3.
(13)

The first condition in (9) implies c1 = c3 = 0 , the second one gives

c2 = α Iq−2

0+
y (1)− Iq−1

0+
y (η) .

Substituting c2 by its value in (12), we obtain

u (t) = Iq
0+
y (t) + t

(

α Iq−2
0+

y (1) − Iq−1
0+

y (η)
)

, (14)

that can be written as

u (t) = 1
Γ(q)

t
∫

0

y (s)

(t− s)1−q
ds+

tα

Γ (q − 2)

1
∫

0

y (s)

(1 − s)3−q
ds

− t
Γ(q−1)

η
∫

0

y (s)

(η − s)(2−q)
ds,

(15)

i.e.,

u (t) =
1

Γ (q − 2)





1
∫

0

G (t, s) y (s) ds−
t

q − 2

η
∫

0

(η − s)q−2 y (s) ds



 , (16)

where G is defined by (11). The proof is complete.

3 Existence and Uniqueness Results

In this section we prove the existence and uniqueness of solutions in the Banach

space E of all functions u ∈ C [0, 1] into R with the norm

‖u‖ = max
0≤t≤1

|u|+ max
0≤t≤1

|cDσ
0+u| .

We know that cDσ
0+u ∈ C [0, 1] if 0 < σ < 1.

Denote by E+ = {u ∈ E,u (t) ≥ 0, t ∈ [0, 1]} . Throughout this section, we sup-

pose that f ∈ C ([0, 1] ×R× R,R). We define the integral operator T : E → E
by

Tu (t) =
1

Γ (q − 2)





1
∫

0

G (t, s) f (s, u (s) ,cDσ
0+u (s)) ds

−
t

q − 2

η
∫

0

(η − s)q−2 f (s, u (s) ,cDσ
0+u (s)) ds



 .

(17)
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Then, we have the following lemma.

Lemma 3.1. The function u ∈ E is solution of the fractional BVP (1) if and only

if Tu (t) = u (t) for all t ∈ [0, 1] .

Theorem 3.2. Assume that there exist nonnegative functions h, g ∈ L1 ([0, 1] ,R+)
such that for all x, y ∈ R and t ∈ [0, 1], one has

|f (t, x, x̄)− f (t, y, ȳ)| ≤ g (t) |x− y|+ h (t) |x̄− ȳ| ,

Cg + Ch < 1 and Ag +Ah < (1 − σ)Γ (1 − σ) ,
(18)

where

Cg =
∥

∥

∥I
q−1

0+
g
∥

∥

∥

L1
+ |α| Iq−2

0+
g (1) + Iq−1

0+
g (η) ,

Ch =
∥

∥

∥I
q−1
0+

h
∥

∥

∥

L1
+ |α| Iq−2

0+
h (1) + Iq−1

0+
h (η)

(19)

and

Ag = Iq−1

0+
(g (1) + g (η)) + + |α| Iq−2

0+
g (1) ,

Ah = Iq−1

0+
(h (1) + h (η)) + + |α| Iq−2

0+
h (1) .

(20)

Then, the fractional BVP (1) has unique solution u ∈ E.

To prove Theorem 3.2, we use the following property of Riemann-Liouville

fractional integrals.

Lemma 3.3. [12] Let q > 0,f ∈ L1 ([a, b] ,R+). Then, for all t ∈ [a, b] we have

Iq+1

0+
f (t) ≤

∥

∥Iq
0+
f
∥

∥

L1 . (21)

Now we prove Theorem 3.2.

Proof of Theorem 3.2. We transform the fractional boundary value problem to a

fixed point problem. By Lemma 3.1, the fractional boundary value problem (1)

has a solution if and only if the operator T has a fixed point in E. Now we will

prove that T is a contraction. Let u, v ∈ E. Then,

Tu (t)− Tv (t) =
1

Γ (q − 2)

×

1
∫

0

G (t, s) (f (s, u (s) ,cDσ
0+u (s))− f (s, v (s) ,cDσ

0+v (s))) ds
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−
t

(q − 2)

η
∫

0

(η − s)q−2 (f (s, u (s) ,cDσ
0+u (s))− f (s, v (s) ,cDσ

0+v (s))) ds

= Iq
0+

((f (t, u (t) ,cDσ
0+u (t))− f (t, v (t) ,cDσ

0+v (t))))

+tαIq−2

0+
(f (1, u (1) ,cDσ

0+u (1))− f (1, v (1) ,cDσ
0+v (1)))

−tIq−2

0+
(f (η, u (η) ,cDσ

0+u (η))− f (η, v (η) ,cDσ
0+v (η))) . (22)

With the help of (18), we obtain

|Tu (t)− Tv (t)|

≤ max
0≤t≤1

|u (t)− v (t)|
[

Iq
0+
g (t) + |α| Iq−2

0+
g (1) + Iq−1

0+
g (η)

]

+ max
0≤t≤1

∣

∣

cDq
0+
u (t)−c Dq

0+
v (t)

∣

∣

[

Iq
0+
h (t) + |α| Iq−2

0+
h (1) + Iq−1

0+
h (η)

]

. (23)

Lemma 3.3 implies

|Tu (t)− Tv (t)| ≤ ‖u− v‖
{∥

∥

∥
Iq−1

0+
g
∥

∥

∥
+ |α| Iq−2

0+
g (1) + Iq−1

0+
g (η)

+
∥

∥

∥
Iq−1

0+
h
∥

∥

∥
+ |α| Iq−2

0+
h (1) + Iq−1

0+
h (η)

}

≤ ‖u− v‖ (Cg + Ch) .
(24)

In view of (18) it yields

|Tu (t)− Tv (t)| ≤ ‖u− v‖ . (25)

On other hand we have

cDσ
0+Tu (t)−

c Dσ
0+Tv (t) =

1

Γ (1 − σ)

t
∫

0

(Tu)′ (s)− (Tv)′ (s)

(t− s)σ
ds, (26)

where

(Tu)′ (t) =
1

Γ (q − 2)





1
∫

0

G1 (t, s) f(s, u(s),
cDσ

0+u(s))ds

−
1

(q − 2)

η
∫

0

(η − s)q−2 f (s, u(s),cDσ
0+u(s))ds



 ,
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G1 (t, s) =
∂G (t, s)

∂t
=



















(t− s)q−2

(q − 2)
+

α

(1 − s)3−q
s ≤ t,

α

(1 − s)3−q
t ≤ s.

(27)

Therefore,

cDσ
0+Tu (t)−

cDσ
0+Tv (t) =

1

Γ (q − 2)Γ (1 − σ)

×

[

t
∫

0

(t− s)−σ

(

1
∫

0

G1 (s, r)

×
(

f
(

r, u(r),cDσ
0+u(r

)

− f
(

r, v(r),cDσ
0+v(r

)

)
)

dr

−
1

Γ (q − 2)

η
∫

0

(η − r)q−2

×
(

f(r, u(r),cDσ
0+u(r))− f(r, v(r),cDσ

0+v(r))
)

dr
)

ds
]

.

(28)

Applying (18) we get

|cDσ
0+Tu (t)−

cDσ
0+Tv (t)| ≤

1

Γ (q − 2)Γ (1 − σ)

×



(t− s)−σ

t
∫

0

(

max
0≤t≤1

|u− v|

×





1
∫

0

G1 (s, r) g(r)dr −

η
∫

0

(η − r)q−2

(q − 2)
g(r)dr





+ max
0≤t≤1

|cDσ
0+u−

c Dσ
0+v|

×





1
∫

0

G1 (s, r) h(r)dr −

η
∫

0

(η − r)q−2

(q − 2)
h(r)dr











 ds. (29)

Let us estimate the term

1
∫

0

G1 (s, r) g(r)dr −

η
∫

0

(η − r)q−2

(q − 2)
g(r)dr.
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We have
∣

∣

∣

∣

∣

1
∫

0

G (s, r) g(r)dr − s
(q−2)

η
∫

0

g(r)

(η−r)2−q
dr

∣

∣

∣

∣

∣

=
∣

∣

∣Γ (q − 2)
[

Iq
0+
g(s) + s(αIq−2

0+
g(1) − Iq−1

0+
g(η))

]∣

∣

∣ ,
∣

∣

∣

∣

∣

1
∫

0

G1 (s, r) g(r)dr −
η
∫

0

(η−r)q−2

(q−2) g(r)dr

∣

∣

∣

∣

∣

=
∣

∣

∣
Γ (q − 2)

[

Iq−1

0+
g(s) + αIq−2

0+
g(1)− Iq−1

0+
g(η)

]∣

∣

∣

≤ Γ (q − 2)
[

Iq−1

0+
g(s) + αIq−2

0+
g(1) + Iq−1

0+
g(η)

]

≤ Γ (q − 2)Ag

(30)

and consequently (29) becomes

|cDσ
0+Tu (t) −

cDσ
0+Tv (t)| =

‖u− v‖

(1 − σ)Γ (1 − σ)
(Ag +Ah) . (31)

With the help of (22) it yields

|cDσ
0+Tu (t) −

cDσ
0+Tv (t)| ≤ ‖u− v‖ . (32)

Taking into account (25)-(32), we obtain

‖Tu− Tv‖ ≤ ‖u− v‖ . (33)

From here, the contraction principle ensures the uniqueness of solution for the

fractional boundary value problem (1), this finishes the proof.

Now, we give an existence result for the fractional boundary value problem (1).

Theorem 3.4. Assume that f (t, 0, 0) 6= 0 and there exists nonnegative functions

k, h, g ∈ L1 ([0, 1] ,R+), φ, ψ ∈ C
(

R+,R
∗
+

)

are nondecreasing on R+ and r > 0

such that

|f (t, x, x̄)| ≤ k (t)ψ (|x|) + h (t)φ (|x|) + g (t) ,

a.e. (t, x) ∈ [0, 1] × R
2,

(34)

(ψ (r) + φ (r) + 1)

(

C1 +
C2

(1 − σ)Γ (1 − σ)

)

< r,

where

C1 = max
0≤t≤1

{Ck, Ch, Cg} , C2 = max
0≤t≤1

{Ak, Ah, Ag} ,
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Ch,g, Ah,g are defined as in Theorem 3.2 and

Ak = Iq−1
0+

(k (1) + k (η)) + + |α| Iq−2
0+

k (1) , (35)

Ck =
∥

∥

∥I
q−1
0+

k
∥

∥

∥

L1
+ |α| Iq−2

0+
k (1) + Iq−1

0+
k (η) .

Then, the fractional boundary value problem (1) has at least one nontrivial solu-

tion u∗ in E.

To prove this theorem, we apply Leray-Schauder nonlinear alternative.

Lemma 3.5. [10] Let F be a Banach space and Ω a bounded open subset of F∈
Ω, T : Ω̄ → F be a completely continuous operator. Then, either there exists

x ∈ ∂Ω, λ > 1 such that T (x) = λx, or there exists a fixed point x∗ ∈ Ω̄.

Proof of Theorem 3.4. First, let us prove that T is completely continuous. It is

clear that T is continuous since f andG are continuous. LetBr = {u ∈ E, ‖u‖ ≤
r} be a bounded subset in E. We shall prove that T (Br) is relatively compact.

(i) For u ∈ Br and using (34) we get

|Tu(t)| ≤ 1
Γ(q−2)

×
1
∫

0

|G (t, s)|
[

k (s)ψ (|u (s)|) + h (s)φ
(∣

∣
cDσ

0+u (s)
∣

∣

)

+ g(s)
]

ds

+ t
Γ(q−2)

η
∫

0

(η − s)q−2
[

k (s)ψ (|u (s)|) + h (s)φ
(∣

∣
cDσ

0+u (s)
∣

∣

)]

.

(36)

Since φ and ψ are nondecreasing (36) implies

|Tu(t)| ≤
1

Γ (q − 2)

1
∫

0

|G (t, s)| [k (s)ψ (‖u‖) + h (s)φ (‖u‖) + g(s)] ds

+
t

Γ (q − 2)

η
∫

0

(η − s)q−2 [k (s)ψ (‖u‖) + h (s)φ (‖u‖)]

≤
1

Γ (q − 2)

1
∫

0

|G (t, s)| [k (s)ψ (r) + h (s)φ (r) + g(s)] ds

+
t

Γ (q − 2)

η
∫

0

(η − s)q−2 [k (s)ψ (r) + h (s)φ (r)] ds.

(37)
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Using similar techniques to get (25) it yields

|Tu(t)| ≤ ψ (r)
[∥

∥

∥I
q−1

0+
k
∥

∥

∥

L1
+ |α| Iq−2

0+
k (1) + Iq−1

0+
k (η)

]

+φ (r)
[∥

∥

∥I
q−1
0+

h
∥

∥

∥

L1
+ |α| Iq−2

0+
h (1) + Iq−1

0+
h (η)

]

+
∥

∥

∥I
q−1

0+
g
∥

∥

∥

L1
+ |α| Iq−2

0+
g (1) + Iq−1

0+
g (η)

≤ Ckψ (r) + Chφ (r) + Cg.

(38)

Hence,

|Tu(t)| ≤ C1 (ψ (r) + φ (r) + 1) . (39)

Moreover, we have

|(Tu)′(t)| =

∣

∣

∣

∣

∣

1

Γ (q − 2)

[

1
∫

0

G1 (t, s) f(s, u(s),
cDσ

0+u(s))ds

− 1
(q−2)

η
∫

0

(η − s)q−2 f
(

s, u(s),cDσ
0+u(s)

)

ds

]∣

∣

∣

∣

≤
1

Γ (q − 2)

×

∣

∣

∣

∣

∣

1
∫

0

G1 (t, s) [k (s)ψ (r) + h (s)φ (r) + g(s)] ds

− 1
(q−2)

η
∫

0

(η − s)q−2 [k (s)ψ (r) + h (s)φ (r)] ds

∣

∣

∣

∣

≤
1

Γ (q − 2)

[∣

∣

∣

∣

∣

ψ (r)
1
∫

0

G1 (t, s) k (s) ds

− 1
(q−2)

η
∫

0

(η − s)q−2 k(s)ds

∣

∣

∣

∣

]

+

[∣

∣

∣

∣

∣

φ(r)
1
∫

0

G1 (t, s) h (s) ds−
1

(q−2)

η
∫

0

(η − s)q−2 h(s)ds

∣

∣

∣

∣

∣

]

+

[∣

∣

∣

∣

∣

1
∫

0

G1 (t, s) g (s)ds−
1

(q−2)

η
∫

0

(η − s)q−2 g(s)ds

∣

∣

∣

∣

∣

]

,

(40)

∣

∣(Tu)′(t)
∣

∣ ≤ Akψ (r) + Ahφ (r) + Ag, (41)

∣

∣(Tu)′(t)
∣

∣ ≤ C2 (ψ (r) + φ (r) + 1) . (42)
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Using (30) we obtain

∣

∣
cDq

0+
Tu (t)

∣

∣ ≤
1

Γ (1 − σ)

t
∫

0

Akψ (r) + Ahφ (r) + Ag

(t− s)σ
ds

≤
C2

Γ (1 − σ)

t
∫

0

ψ (r) + φ (r) + 1

(t− s)σ
ds

≤
C2

(1 − σ)Γ (1 − σ)
(ψ (r) + φ (r) + 1)

(43)

and from (39) and (43), we get

‖Tu‖ = ((ψ (r) + φ (r) + 1))

(

C1 +
C2

(1 − σ)Γ (1 − σ)

)

. (44)

Then T (Br) is uniformly bounded.

(ii) T (Br) is equicontinuous indeed for all t1, t2 ∈ [0, 1] , t1 < t2, u ∈ Br. Let

C = max
0≤t≤1

{|f (t, u(t),cDσ
0+u(t)) |, 0 ≤ t ≤ 1, ‖u‖ < r} .

Therefore,

∣

∣Tu(t1) − Tu(t2)
∣

∣ =
t2
∫

t1

|(Tu)′(t)| dt

≤
t2
∫

t1

(Akψ (r) + Ahφ (r) +Ag) dt

≤ (t1 − t2) (Akψ (r) + Ahφ (r) + Ag) .

(45)

On the other hand, we have

∣

∣
cDσ

0+Tu (t1)−
c Dσ

0+Tu (t2)
∣

∣

=

∣

∣

∣

∣

∣

1

Γ (1 − σ)

t1
∫

0

(Tu)′ (s)

(t1 − s)σ
ds −

1

Γ (1 − σ)

t2
∫

0

(Tu)′ (s)

(t2 − s)σ
ds

∣

∣

∣

∣

∣

≤
1

Γ (1 − σ)

t1
∫

0

∣

∣(t1 − s)−σ − (t2 − s)−σ
∣

∣ |(Tu)′ (s)| ds

+
1

Γ (1 − σ)

t2
∫

t1

(t2 − s)−σ |(Tu)′ (s)| ds.

(46)

Using (30) and (40) it yields

∣

∣(Tu)′ (t)
∣

∣ ≤ C2 (ψ (r) + φ (r) + 1) , (47)
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∣

∣

cDq
0+
Tu (t1)−

c Dq
0+
Tu (t2)

∣

∣

≤
C2 (ψ (r) + φ (r) + 1)

(1 − σ)Γ (1 − σ)

(

2 (t2 − t1)
1−σ + t1−σ

2 + t1−σ
1

)

, (48)

when t1 → t2, in (45) and (48),
∣

∣Tu(t1) − Tu(t2)
∣

∣ and
∣

∣
cDq

0+
Tu (t1)−

c Dq
0+
Tu (t2)

∣

∣ tend to 0. Consequently T (Br) is equicontinuous.

From Arzela-Ascoli Theorem we deduce that T is completely continuous operator.

Now we apply Leray-Schauder nonlinear alternative to prove that T has at least

one nontrivial solution in E. Letting Ω = {u ∈ E : ‖u‖ < r}, for any u ∈ ∂Ω ,

such that u = λTu, 0 < λ < 1, we get, with the help of (39)

|u(t)| = λ |Tu(t)| ≤ |Tu(t)| ≤ C1 (ψ (r) + φ (r) + 1) . (49)

Taking into account (43), we obtain

∣

∣

cDq
0+
Tu (t)

∣

∣ ≤
C2

(1 − σ)Γ (1 − σ)
(ψ (r) + φ (r) + 1) . (50)

From (49), (50) and (34), we deduce that

‖u‖ ≤ (ψ (r) + φ (r) + 1)

(

C1 +
C2

(1 − σ)Γ (1 − σ)

)

< r (51)

which contradicts the fact that u ∈ ∂Ω. Lemma 3.5 allows us to conclude that

the operator T has a fixed point u∗ ∈ Ω and then the fractional boundary value

problem (1) has a nontrivial solution u∗ ∈ E. The proof is completed.

4 Existence of nonnegative solutions

In this section we investigate the positivity of solution for the fractional boundary

value problem (1). To do this, we show the following hypotheses.

(H1) f (t, u, v) = a (t) f1 (u, v) , where a ∈ C ([0, 1] , (0,∞)) and

f1 ∈ C (R+ × R,R+) ;

(H2) 0 <
1
∫

0

Ψ(s) a(s)

(1−s)3−q
ds <∞, where

Ψ(s) =











α−
(η − s)q−2 (1 − s)3−q

(q − 2)
s ≤ η,

α s > η.

Let us rewrite the function u as

u (t) =
1

Γ (q − 2)

1
∫

0

H (t, s)

(1 − s)3−q
a (s) f1 (u (s) ,

cDσ
0+u (s)) ds,
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where

H (t, s) =



































































(

(t− s)q−1 (1 − s)3−q
)

(q − 2) (q − 1)
+ tα

−
t (η − s)q−2 (1 − s)3−q

(q − 2)
, s ≤ t, s ≤ η,

tα−
t (η − s)q−2 (1 − s)3−q

(q − 2)
, s > t, s ≤ η,

(

(t− s)q−1 (1 − s)3−q
)

(q − 2) (q − 1)
+ tα, s ≤ t, s > η,

tα, s > t, s > η.

(52)

Then,

cDσ
0+u (t) =

1
∫

0

Hσ (t, s)

(1 − s)3−q
a (s) f1 (u (s) ,

cDσ
0+u (s)) ds,

where

Hσ (t, s) =











































































































(

(t− s)(q−σ)−1 (1 − s)3−q
)

Γ (q − σ)
+

αt1−σ

Γ (σ)Γ (q − 2)

−
t1−σ (η − s)q−2 (1 − s)3−q

Γ (σ)Γ (q − 1)
, s ≤ t, s ≤ η,

αt1−σ

Γ (σ)Γ (q − 2)

−
t1−σ (η − s)q−2 (1 − s)3−q

Γ (σ)Γ (q − 1)
, s > t, s ≤ η,

(

(t− s)(q−σ)−1 (1 − s)3−q
)

Γ (q − σ)

+
αt1−σ

Γ (σ)Γ (q − 2)
, s ≤ t, s > η,

αt1−σ

Γ (σ)Γ (q − 2)
, s > t, s > η.

(53)

Now we give the properties of the Green function H (t, s) .

Lemma 4.1. If α ≥ 1
(q−2) , then H (t, s) has the following properties

(i) H (t, s) ,Hσ (t, s) ∈ C ([0, 1]× [0, 1]) , 0 < H (t, s) , 0 < Hσ (t, s) for all

t, s ∈ [0, 1],
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(ii) if t ∈ [τ, 1], τ > 0, then for all s ∈ [0, 1] we have

0 < τΨ(s) ≤ H(t, s) ≤ 2Ψ(s) (54)

and

0 <
τ

Γ (σ)Γ (q − 2)
Ψ (s) ≤ Hσ(t, s) ≤ ςΨ (s) , (55)

where ς =

(

(q − 2)Γ (σ) + 1

Γ (σ)Γ (q − 2)

)

.

Proof. (i) It is obvious that H (t, s) ∈ C ([0, 1] × [0, 1]). Moreover, we have

tα−
t (η − s)q−2 (1 − s)3−q

(q − 2)
=
t
[

α (q − 2)− (1 − s)3−q (η − s)q−2
]

(q − 2)
(56)

which is positive if α ≥
1

(q − 2)
. Hence H (t, s) is nonnegative for all t, s ∈

[0, 1] .

(ii) Let t ∈ [τ, 1]. It is easy to see that Ψ (s) 6= 0. Then, we have

H (t, s)

Ψ (s)
=

(

(t− s)q−1 (1 − s)3−q
)

(q − 2) (q − 1)
+ tα

α

≤
(1 − s)2

(q − 1)
+ t ≤ 2, η < s ≤ t, (57)

H (t, s)

Ψ (s)
=

1

α−
(η − s)q−2 (1 − s)3−q

(q − 2)

×





(

(t− s)q−1 (1 − s)3−q
)

(q − 2) (q − 1)
+ tα−

t (η − s)q−2 (1 − s)3−q

(q − 2)





=
(t− s)q−1 (1 − s)3−q

(q − 1) (α (q − 2) − (η − s)q−2 (1 − s)3−q)
+ t

≤ 2, s ≤ t, s ≤ η, (58)
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H (t, s)

Ψ (s)
=

[

tα

(1 − s)3−q
−
t (η − s)q−2

(q − 2)

]

[

α

(1 − s)3−q
−

(η − s)q−2

(q − 2)

] (59)

= t ≤ 2, t < s ≤ η,

H (t, s)

Ψ (s)
= t ≤ 2, t < s, η < s. (60)

Now we look for lower bounds of H (t, s):

η ≤ s ≤ t,
H (t, s)

Ψ (s)
≥ t ≥ τ, s ≤ t, s < η,

t ≤ s, s < η,

t ≤ s, η < s.

(61)

Since Ψ (s) is nonnegative, we obtain

0 < τΨ (s) ≤ H(t, s) ≤ 2Ψ (s) .

Similarly, we can prove that Hσ (t, s) has the following properties. The proof is

completed.

We recall the definition of positive solution.

Definition 4.2. A function u is called positive solution of the fractional boundary

value problem (1) if u(t) ≥ 0, for all t ∈ [0, 1].

Lemma 4.3. If u ∈ E+ and α ≥ 1
(q−2) , then the solution of the fractional BVP (1)

is nonnegative and satisfies

min
t∈[τ,1]

(u (t) +c Dσ
0+u (t)) ≥

τ (1 + Γ (σ))

1 + qΓ (σ)
‖u‖ . (62)

Proof. First, let us remark that under the assumptions on u and f , the function
cDσ

0+u is nonnegative. Applying the right-hand side of inequality (54), we get

u (t) ≤
2

Γ (q − 2)

1
∫

0

Ψ(s)
a(s)

(1 − s)3−q
f1(u(s),

cDσ
0+u(s))ds. (63)
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Moreover, (54) gives

cDσ
0+u (t) =

1
∫

0

Hσ (t, s)
a (s)

(1 − s)3−q
f1

(

u (s) ,cDσ
0+u (s)

)

ds

≤ ς
1
∫

0

Ψ(s)
a (s)

(1 − s)3−q
f1(u(s),

cDσ
0+u(s))ds.

(64)

Combining (63) and (64) yield

‖u‖ ≤

(

2

Γ (q − 2)
+ ς

)

1
∫

0

Ψ(s)
a (s)

(1 − s)3−q
f1(u(s),

cDσ
0+u(s))ds

which is equivalent to

‖u‖ ≤

(

qΓ (σ) + 1

Γ (σ)Γ (q − 2)

)

1
∫

0

Ψ(s)
a (s)

(1 − s)3−q
f1(u(s),

cDσ
0+u(s))ds. (65)

Hence,

1
∫

0

Ψ(s)
a (s)

(1 − s)3−q
f1(u(s),

cDσ
0+u(s))ds ≥

Γ (σ)Γ (q − 2)

qΓ (σ) + 1
‖u‖ . (66)

In view of the left hand side of (54), we obtain for all t ∈ [τ, 1]

u(t) ≥
τ

Γ (q − 2)

1
∫

0

Ψ(s)
a (s)

(1 − s)3−q
f1(u(s),

cDσ
0+u(s))ds. (67)

On the other hand, we have

cDσ
0+u (t) ≥

τ

Γ (σ)Γ (q − 2)

1
∫

0

Ψ(s)
a (s)

(1 − s)3−q
f1 (u (s) ,

cDσ
0+u (s)) ds. (68)

From (67) and (68), we get

min
t∈[τ,1]

(u (t) +c Dσ
0+u (t))

≥
τ (1 + Γ (σ))

Γ (σ)Γ (q − 2)

1
∫

0

Ψ(s)
a (s)

(1 − s)3−q
f1(u(s),

cDσ
0+u(s))ds (69)



Existence of nonnegative solutions for a nonlinear fractional BVP 73

and with the help of (66), we deduce to

min
t∈(τ,1)

(u (t) +c Dσ
0+u (t)) ≥

τ (1 + Γ (σ))

1 + qΓ (σ)
‖u‖ . (70)

This completes the proof.

Define the quantities A0 and A∞ by

A0 = lim
(|u|+|v|)→o

f1 (u, v)

|u|+ |v|
, A∞ = lim

(|u|+|v|)→∞

f1 (u, v)

|u|+ |v|
. (71)

The case A0 = 0 and A∞ = ∞ is called superlinear case and the case A0 = ∞,

A∞ = 0 is called sublinear case. The main result of this section is as follows.

Theorem 4.4. Under the assumptions of Lemma 4.3, the fractional BVP (1) has at

least one nonnegative solution in the both cases superlinear as well as sublinear.

To prove Theorem 4.4, we apply the well-known Guo-Krasnosel’skii fixed point

theorem on a cone.

Theorem 4.5. [15] Let E be a Banach space and let K ⊂ E be a cone. Assume

that Ω1 and Ω2 are open subsets of E with 0 ∈ Ω1, Ω̄1 ⊂ Ω2 and let

A : K ∩
(

Ω̄2 \ Ω1

)

→ K (72)

be a completely continuous operator such that

(i)‖Au‖ ≤ ‖u‖ , u ∈ K ∩ ∂Ω1, and ‖Au‖ ≥ ‖u‖ , u ∈ K ∩ ∂Ω2,

(ii)‖Au‖ ≥ ‖u‖ , u ∈ K ∩ ∂Ω1, and ‖Au‖ ≤ ‖u‖ , u ∈ K ∩ ∂Ω2.
Then, A has a fixed point in K ∩

(

Ω̄2 \ Ω1

)

.

Proof. To prove Theorem 4.4, we define the cone K by

K =

{

u ∈ E+, min
t∈[τ,1]

(u (t) +c Dσ
0+u (t)) ≥

τ (1 + Γ (σ))

1 + qΓ (σ)
‖u‖

}

. (73)

It is easy to check that K is a nonempty closed and convex subset of E, hence it is

a cone.

Using Lemma 4.3, we see that TK ⊂ K. From the proof of Theorem 3.4, we

know that T is completely continuous in E.

Let us prove the superlinear case. First, since A0 = 0, for any ε > 0, there

exists R1 > 0, such that

f1 (u, v) ≤ ε (|u|+ |v|) , (74)
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for 0 < |u|+ |v| ≤ R1, Letting Ω1 = {u ∈ E, ‖u‖ < R1}, for any u ∈ K ∩ ∂Ω1,

it yields

Tu(t) =
1

Γ (q − 2)

1
∫

0

H (t, s)
a (s)

(1 − s)3−q
f1(u(s),

cDσ
0+u(s))ds

≤
2ε ‖u‖

Γ (q − 2)

1
∫

0

Ψ (s)
a (s)

(1 − s)3−q
ds.

(75)

Moreover, we have

cDσ
0+Tu(t) ≤ ς

1
∫

0

Ψ (s)
a (s)

(1 − s)3−q
f1(u(s),

cDσ
0+u(s))ds

≤ ςε ‖u‖
1
∫

0

Ψ (s)
a (s)

(1 − s)3−q
ds.

(76)

From (75) and (76) we conclude

‖Tu‖ ≤

(

2

Γ (q − 2)
+ ς

)

ε ‖u‖

1
∫

0

Ψ (s)
a (s)

(1 − s)3−q
ds,

‖Tu‖ ≤

(

qΓ (σ) + 1

Γ (σ)Γ (q − 2)

)

ε ‖u‖

1
∫

0

Ψ (s)
a (s)

(1 − s)3−q
ds. (77)

In view of hypothesis (H2), one can choose ε such that

ε ≤
Γ (σ)Γ (q − 2)

qΓ (σ) + 1
1

1∫

0

Ψ(s)
a (s)

(1 − s)3−q
ds

. (78)

The inequalities (77) and (78) imply that ||Tu|| ≤ ||u||, for all u ∈ K ∩ ∂Ω1.

Second, in view of A∞ = ∞, then for any M > 0 there exists R2 > 0, such

that f1 (u, v) ≥M (|u|+ |v|) for |u|+ |v| ≥ R2.
Let R = max{2R1, (1 + qΓ (σ))R2/τ (1 + Γ (σ))} and denote by Ω2 the open

set {u ∈ E, ||u|| < R}. If u ∈ K ∩ ∂Ω2 then

min
t∈[τ,1]

(u (t) +c Dσ
0+u (t)) ≥

τ (1 + Γ (σ))

1 + qΓ (σ)
‖u‖ =

τ (1 + Γ (σ))

1 + qΓ (σ)
R ≥ R2. (79)
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Using the left hand side of (54) and Lemma 4.3, we obtain

Tu(t) ≥
τ

Γ (q − 2)

1
∫

0

Ψ (s)
a (s)

(1 − s)3−q
f1(u(s),

cDσ
0+u(s))ds

≥
τM ‖u‖

Γ (q − 2)

1
∫

0

Ψ (s)
a (s)

(1 − s)3−q
ds.

(80)

Moreover, we get with the help of (68)

cDσ
0+
Tu (t) ≥

τ

Γ (σ)Γ (q − 2)

1
∫

0

Ψ (s)
a (s)

(1 − s)3−q
f1(u(s),

cDσ
0+
u(s))ds

≥
τ

Γ (σ)Γ (q − 2)
M ‖u‖

1
∫

0

Ψ (s)
a (s)

(1 − s)3−q
ds.

(81)

In view of (80) and (81) we can write

Tu(t) +c Dσ
0+Tu (t) ≥

τ (1 + Γ (σ))

Γ (σ)Γ (q − 2)
M ‖u‖

1
∫

0

Ψ (s)
a (s)

(1 − s)3−q
ds. (82)

Let us choose M such that

M ≥
Γ (σ)Γ (q − 2)

τ (1 + Γ (σ))
1
∫

0

Ψ (s)
a (s)

(1 − s)3−q
ds

, (83)

then we get

Tu(t) +c Dσ
0+Tu (t) ≥ ‖u‖ .

Hence,

‖Tu‖ ≥ ‖u‖ ,∀u ∈ K ∩ ∂Ω2. (84)

The first part of Theorem 4.5 implies that T has a fixed point inK∩
(

Ω̄2\Ω1

)

such

that R2 ≤ ||u|| ≤ R. To prove the sublinear case we apply similar techniques. The

proof is complete.

In order to illustrate our results, we give the following examples.

Example 4.6. The fractional boundary value problem

cD
7|3
0+
u = (sin t)2 u+ (1 − t)3 D

1|5
0+
u+ et,

u (0) = u′′(0) = 0, u′( 1
3
) = 1

2
u′′(1)

(85)

has a unique solution in E.
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Proof. In this case we have f(t, x, y) = (sin t)2x+ (1 − t)2y + et,

2 < q =
5

2
< 3, 0 < σ = 1

5
< 1, α = 1

2
and

|f(t, x, x̄)− f(t, y, ȳ)| ≤ (sin t)2 |x− y|+ (1 − t)3 |x̄− ȳ| . (86)

Then, g(t) = (sin t)2, h(t) = (1 − t)3
and some calculus gives

∥

∥

∥I
q−1
0+

g
∥

∥

∥ = 0.15045, Iq−1
0+

g(1) = 0.146 33,

Iq−1

0+
g(

1

3
) = 3.6113 × 10−3, Iq−2

0+
g(1) = 0.46503,

Ag = 0.38246, Cg = 0.38658,
∥

∥

∥
Iq−1

0+
h
∥

∥

∥
= 0.13677, Iq−1

0+
h(1) = 0.25075,

Iq−1

0+
h(

1

3
) = 9.7076 × 10−2, Iq−2

0+
h(1) = 0.16120,

Ah = 0.42843, Ch = 0.31445,

Cg + Ch = 0.38658 + 0.31445 = 0.7043 < 1, (87)

Ag + Ah = 0.38246 + 0.42843 = 0.81089 <

(

1 −
1

5

)

Γ
(

1 −
1

5

)

. (88)

Thus Theorem 3.2 implies that fractional boundary value problem (85) has a unique

in E.

Example 4.7. The fractional boundary value problem

cD
7|3
0+
u = (1 − t)2

(

u2 + 2

(6 + u4)
+ ln

(

1 + (cD
5
6

0+
u)2

)

+ 1

)

,

u(0) = u′′(0) = 0, u′ (η) = 3
2
u′′(1)

(89)

has at least one nontrivial solution in E.

Proof. We apply Theorem 3.4 to prove that the fractional boundary value problem

(89) has at least one nontrivial solution. We have q =
7

3
, σ =

2

3
, α =

3

2
, η = 1

4

and

|f(t, x, x̄| =

∣

∣

∣

∣

∣

(1 − t)2
(

x2 + 2
)

(6 + x4)
+ (1 − t)2

ln(1 + x̄2) + (1 − t)2

∣

∣

∣

∣

∣

≤ (1 − t)2

(

x2 + 2
)

(6 + x4)
+ (1 − t)2

ln(1 + x̄2) + (1 − t)2

≤ k (t)ψ (|x|) + h (t)φ (|x̄|) + g (t) ,

(90)
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where k (t) = h (t) = g (t) = (1 − t)2 , ψ (x) =

(

x2 + 2
)

(6 + x4)
,

φ (x̄) = ln(1 + x̄2), f(t, 0, 0) 6= 0.
Let us find r such that (34) holds. For this, we have

∥

∥

∥
Iq−1

0+
g
∥

∥

∥
= 0.25843, Iq−1

0+
g(1) = 0.33595,

Iq−1

0+
g(

1

3
) = 0.14420, Iq−2

0+
g(1) = 0.15998,

Cg = C1 = 0.50928, Ag = C2 = 0.5868.

(91)

We see that (34) is equivalent to

((

r2 + 2

r4 + 6

)

+ ln(1 + r2) + 1

)

(1.1664) − r

which is negative for r = 6.

Example 4.8. The fractional boundary value problem

cDq
0+
u =

1 − t2

1 + t2

[

4π

u+c Dσ
0+
u+ 6π

+ e−π(u+cDσ

0+
u)
]

,

u(0) = u′′(0) = 0, u′ (η) = αu′′(1)

(92)

has at least one nonnegative solution, if q =
7

3
, σ =

5

6
, α =

7

2
and η =

1

4
.

Proof.

f
(

(t, u,cDσ
0+u
)

=
1 − t2

1 + t2

[

4π

u+c Dσ
0+
u+ 6π

+ e−π(u+cDσ

0+
u)
]

,

f1

(

u,cDσ
0+u
)

=

[

4π

u+c Dσ
0+
u+ 6π

+ e−π(u+cDσ

0+
u)
]

,

a(t) =
1 − t2

1 + t2
.

(93)

Obviously, it is not difficult to verify conditions (H1) and (H2). Through a simple

calculation we get A0 = 0 and A∞ = ∞. Thus, by Theorem 4.4 we get that the

problem (92) has at least one nonnegative solution.
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