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A note on h-convex functions
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Abstract. In this work, we discuss the continuity of h-convex functions by introducing the
concepts of h-convex curves (h-cord). Geometric interpretation of h-convexity is given.
The fact that for a h-continuous function f , is being h-convex if and only if is h-midconvex
is proved. Generally, we prove that if f is h-convex then f is h-continuous. A discussion
regarding derivative characterization of h-convexity is also proposed.
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1 Introduction

Let I be a real interval. A function f : I → R is called convex iff

f (tα+ (1− t)β) ≤ tf (α) + (1− t) f (β) , (1)

for all points α, β ∈ I and all t ∈ [0, 1]. If −f is convex then we say that f is
concave. Moreover, if f is both convex and concave, then f is said to be affine.

In 1979, Breckner [3] introduced the class of s-convex functions (in the second
sense), as follows:

Definition 1.1. Let I ⊆ [0,∞) and s ∈ (0, 1], a function f : I → [0,∞) is
s-convex function or that f belongs to the class K2

s (I) if for all x, y ∈ I and
t ∈ [0, 1] we have

f (tx+ (1− t) y) ≤ tsf (x) + (1− t)s f (y) . (2)

In the last years, among others, the notion of s-convex functions is discriminated
and starred. In literature a few papers devoted to study this type of convexity. The
building theories of s-convexity as geometric and analytic tools are still under
consideration, development and examine. Due to Hudzik and Maligranda (1994)
[15], two senses of s-convexity (0 < s ≤ 1) of real-valued functions are known in
the literature, and given below.
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Definition 1.2. A function f : R+ → R, where R+ = [0,∞), is said to be s-
convex in the first sense if

f (αx+ βy) ≤ αsf (x) + βsf (y) (3)

for all x, y ∈ [0,∞), α, β ≥ 0 with αs + βs = 1 and for some fixed s ∈ (0, 1].
This class of functions is denoted by K1

s .

This definition of s-convexity, for so called ϕ-functions, was introduced by Orlicz
in 1961 and was used in the theory of Orlicz spaces. A function f : R+ → R+

is said to be a ϕ-function if f(0) = 0 and f is nondecreasing and continuous.
The symbol ϕ stands for an Orlicz function, i.e., ϕ is defined on the real line R
with values in [0,+∞] and is convex, even, vanishing and continuous at zero. For
further details see [15, 17, 18, 32].

Remark 1.3. We note that, it can be easily seen that for s = 1, s-convexity (in
both senses) reduces to the ordinary convexity of functions defined on [0,∞).

In general, a real-valued function f defined on an open convex subset C of a
linear space is called Breckner s-convex if (2) holds for every x, y ∈ C, α, β ∈
[0, 1] with α + β = 1, where s ∈ (0, 1) is fixed. More preciously, Breckner
considered an open convex subset M of a linear space L and defined f : M ⊆
L→ R, to be s-convex if (2) holds, for all x, y ∈M, α, β ∈ [0, 1] with α+β = 1,
where s ∈ (0, 1) is fixed. Also, Breckner considered a special case of s-convex
functions which is so called rational s-convex, that is for all rational α, β ∈ [0, 1]
with α + β = 1 and points x, y ∈ M, the inequality (2) holds. Furthermore,
Breckner proved that for locally bounded above s-convex functions defined on
open subsets of linear topological spaces are continuous and nonnegative.

In 1978, Breckner and Orbán [4] studied functions defined on a convex subset of
complex Hausdorff topological linear space of dimension greater than 1 into an or-
dered topological linear space such that all its order–bounded subsets are bounded,
and proved that Breckner s-convex functions with s ∈ (0, 1] are continuous on the
interior of their domain.

In 1994, Breckner [5] (see also [6]) proved that for a rationally s-convex func-
tion continuity and local s-Hölder continuity are equivalent at each interior point of
the domain of definition of the function. Furthermore, it is shown that a rationally
s-convex function which is bounded on a nonempty open convex set is s-Hölder
continuous on every compact subset of this set. Indeed, Breckner [4], showed that
if a real-valued function defined on a convex subset of a linear space endowed with
topology generated by a direct pseudonorm is continuous and rationally Breckner
s-convex for an s ∈ (0, 1], then it is locally s-Hölder.
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In 1994, Hudzik and Maligranda [15], realized the importance and undertook a
systematic study of s-convex functions in both senses. They compared the notion
of Breckner s-convexity with a similar one of [18]. A function f is Orlicz s-convex
if the inequality (3) is satisfied for all α, β such that αs + βs = 1. Hudzik and
Maligranda, among others, gave an example of a non-continuous Orlicz s-convex
function, which is not Breckner s-convex.

In 2001, Pycia [24] established a direct proof of Breckner’s result that Breckner
s-convex real-valued functions on finite dimensional normed spaces are locally s-
Hölder. The same result was proved in [1] where different context was considered.
For the same result regarding convexity see [7, 8].

In the 2008, Pinheiro [25] studied the class of K1
s of s-convex functions and

explained why the first s-convexity sense was abandoned by the literature in the
field. In fact, Pinheiro , proposed some criticisms to the current way of presenting
the definition of s-convex functions. We may summarize Pinheiro criticisms in the
following points:

(i) What is the ‘true’ difference between convex and s-convex in both senses.

(ii) So far, Pinheiro did not find references, in the literature, to the geometry of
an s-convex function, what, once more, makes it less clear to understand the
difference between an s-convex and a convex function whilst there are clear
references to the geometry of the convex functions.

In the same paper [25], Pinheiro revised the class of s–convexity in the first sense.
In [26], Pinheiro proposed a geometric interpretation for this type of functions.

Definition 1.4. Let U be any subset of [0,∞). A function f : X → R, is said to
be s–convex in the first sense if

f
(
λx+ (1− λs)1/s y

)
≤ λsf (x) + (1− λs) f (y) (4)

for all x, y ∈ U and λ ∈ [0, 1].

The presented reason from Pinheiro to why s-convexity in the first sense got
abandoned in the literature, is that, if one takes x = y = 1

4 with α = 1
2 and β = 1

for example, one gets that αx + βy = 0.125 + 0.25 = 0.375. So that, if s = 1
2 ,

then the value of αx + βy would lie outside of the interval [x, y], on the contrary
of this, the value of αx + βy would lie inside of the interval [x, y] in case of
convexity. With this the first sense of s-convexity becomes a close to the meaning
of convexity and so the geometric explanation of s-convex function is easy to be
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compared with the geometry of convex function if some further restrictions are
imposed to it.
The proposed geometric description for s-convex curve in the first sense stated by
Pinheiro [25–30] as follows:

Definition 1.5. A function f : X ⊂ R+ → R is called s-convex in the first sense
if and only if one in two situations occur:

• 0 < s1 < 1, f then belonging to K1
s , for 0 < s ≤ s1: The graph of f

lies below (L), which is a convex curve between any two domain points with
minimum distance of (2−1 − 2−1/s) (domain points distance), that is, for
every compact interval J ⊂ I , where length of J is greater than, or equal to
(2−1 − 2−1/s) interval with boundary ∂J , it is true that

sup
J

(L− f) ≥ sup
∂J

(L− f)

and L is such that it is continuous, smooth, and, for each point x of L, defined
in terms of ninety degrees intercepts with the straight line between the two
points of the function, it is true that 1 ≤ x ≤ 2−1+2−s, where 1 corresponds
to the straight line height;

• f is convex.

In general, the class of s-convex functions in the second sense would incomplete
concept without a geometric interpretations for it is behavior. Recently, Pinheiro
devoted her efforts to give a clear geometric definition for s-convexity in second
sense. In [27] Pinheiro successfully proposed a geometric description for s-convex
curve, as follows:

Definition 1.6. f is called s-convex in the second sense if and only if one in two
situations occur:

• 0 < s1 < 1, f then belonging to K2
s , for 0 < s ≤ s1: The graph of

f lies below (L), which is a convex curve between any two domain points
with minimum distance of (2−s − 2−1) (domain points distance), that is, for
every compact interval J ⊂ I , where length of J is greater than, or equal to
(2−s − 2−1) interval with boundary ∂J , it is true that

sup
J

(L− f) ≥ sup
∂J

(L− f)

and L is such that it is continuous, smooth, and, for each point x of L, defined
in terms of ninety degrees intercepts with the straight line between the two
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points of the function, it is true that 1 ≤ x ≤ 21−s, where 1 corresponds to
the straight line height;

• f is convex.

More geometrically, an interpretation of s-convex functions is introduced as fol-
lows:

Definition 1.7. f is called s–convex, 0 < s < 1, f ≥ 0, if the graph of f lies
below a ‘bent chord’ L between any two points. That is, for every compact interval
J ⊂ I , with boundary ∂J , it is true that

sup
J

(L− f) ≥ sup
∂J

(L− f) .

Indeed the geometric view for s-convex mapping of second sense is going through
which Pinheiro called it ‘limiting curve’, which is going to distinguish curves that
are s-convex of second sense from those that are not. After that, Pinheiro obtained
how the choice of ‘s’ affects the limiting curve. In general a ‘limiting curve’ may
be described by a bent chord joining f(x) to f(y)-corresponding to the verification
of the s-convexity property of the function f in the interval [x, y]-forms represent-
ing the limiting height for the curve f to be at, limit included, in case f is s-convex.
This curve is represented by λsf (x) + (1− λ)s f (y), for each 0 < s < 1.
Some properties of the limiting curve such as: maximum height, length, and local
inclination are considered in [26–29].

• Height. The maximum of the limiting s-curve is 21−s.

• Length. Let f (λ) = λsX + (1− λ)s Y , with X = f (x), and Y = f (y).
The size of the limiting curve from f (x) to f (y) is

L (λ) =

∫ 1

0

√
1 + s2λ2s−2 + s2 (1− λ)2s−2 − 2s2λs−1 (1− λ)s−1dλ

which shows that how bent is the limiting curve.

• Local inclination. The local inclination of the limiting curve may be founded
by means of the first derivative, consider f (λ) = λsf (x) + (1− λ)s f (y),
Therefore, the inclination is f ′ (λ) = sλs−1f (x) − s (1− λ)s−1 f (y) and
varies accordingly to the value of λ.

In 1985, E. K. Godunova and V. I. Levin (see [13] or [20, pp. 410-433]) intro-
duced the following class of functions:
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Definition 1.8. We say that f : I → R is a Godunova-Levin function or that f
belongs to the class Q (I) if for all x, y ∈ I and t ∈ (0, 1) we have

f (tx+ (1− t) y) ≤ f (x)

t
+
f (y)

1− t
.

In the same work, the authors proved that all nonnegative monotonic and non-
negative convex functions belong to this class. For related works see [12, 19].

In 1999, Pearce and Rubinov [23], established a new type of convex functions
which is called P -functions.

Definition 1.9. We say that f : I → R is P -function or that f belongs to the class
P (I) if for all x, y ∈ I and t ∈ [0, 1] we have

f (tx+ (1− t) y) ≤ f (x) + f (y) .

Indeed, Q(I) ⊇ P (I) and for applications it is important to note that P (I) also
consists only of nonnegative monotonic, convex and quasi-convex functions. A
related work was considered in [12, 34].

In 2007, Varošanec [35] introduced the class of h-convex functions which gen-
eralize convex, s-convex, Godunova-Levin functions and P -functions. Namely,
the h-convex function is defined as a non-negative function f : I → R which
satisfies

f (tα+ (1− t)β) ≤ h (t) f (α) + h (1− t) f (β) , (5)

where h is a non-negative function, t ∈ (0, 1) ⊆ J and x, y ∈ I , where I and
J are real intervals such that (0, 1) ⊆ J . Accordingly, some properties of h-
convex functions were discussed in the same work of Varošanec. For more results;
generalization, counterparts and inequalities regarding h-convexity see [2, 9–11,
14, 16, 22].

2 On h–convex functions

Throughout this work, I and J are two intervals subset of (0,∞) such that (0, 1) ⊆
J and [a, b] ⊆ I with 0 < a < b.

Definition 2.1. The h-cord joining any two points (x, f (x)) and (y, f (y)) on the
graph of f is defined to be

L (t;h) := [f (y)− f (x)]h
(
t− x
y − x

)
+ f (x) , (6)
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for all t ∈ [x, y] ⊆ I. In particular, if h(t) = t then we obtain the well known
form of chord, which is

L (t; t) :=
f (y)− f (x)

y − x
(t− x) + f (x) .

It’s worth to mention that, if h (0) = 0 and h (1) = 1, then L (x;h) = f (x)
and L (y;h) = f (y), so that the h-cord L agrees with f at endpoints x, y, and this
true for all such x, y ∈ I .

The h-convexity of a function f : I → R means geometrically that the points
of the graph of f are on or below the h-chord joining the endpoints (x, f (x)) and
(y, f (y)) for all x, y ∈ I , x < y. In symbols, we write

f (t) ≤ [f (y)− f (x)]h
(
t− x
y − x

)
+ f (x) = L (t;h) ,

for any x ≤ t ≤ y and x, y ∈ I .

Figure 1. The graph of hk(t) = tk, k = 1
2 , 1,

3
2 (green, black, blue), respectively,

and f(t) = t2 (red), t ∈ [0, 1].

Hence, (5) means geometrically that for a given three non-collinear points P,Q
and R on the graph of f with Q between P and R (say P < Q < R). Let h is
super(sub)multiplicative and h (α) ≥ (≤)α, for α ∈ (0, 1) ⊂ J . A function f is
h–convex (concave) if Q is on or below (above) the h-chord P̂R (see Figure 1).
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Caution: In special case, for hk (t) = tk, t ∈ (0, 1) the proposed geometric
interpretation is valid for k ∈ (−1, 0) ∪ (0,∞). In the case that k ≤ −1 or k = 0
the geometric meaning is inconclusive so we exclude this case (and (and similar
cases) from our proposal above.

Definition 2.2. Let h : J → (0,∞) be a non-negative function. Let f : I → R be
any function. We say f is h-midconvex (h-midconcave) if

f

(
x+ y

2

)
≤ (≥)h

(
1
2

)
[f (x) + f (y)]

for all x, y ∈ I .

In particular, f is locally h-midocnvex if and only if

h

(
1
2

)
[f (x+ p) + f (x− p)]− f (x) ≥ 0,

for all x ∈ (x− p, x+ p), p > 0.
A generalization of Jensen characterization of convex functions could be stated

as follows:

Theorem 2.3. Let h : J → (0,∞) be a non-negative function such that h (α) ≥ α,
for all α ∈ (0, 1). Let f : I → R+ be a nonnegative continuous function. f is
h-convex if and only if it is h-midconvex; i.e., the inequality

f

(
x+ y

2

)
≤ h

(
1
2

)
[f (x) + f (y)] ,

holds for all x, y ∈ I .

Proof. The first direction follows directly by definition of h-convexity. To prove
the second direction, suppose on the contrary that f is not h-convex. Then, there
exists a subinterval [x, y] such that the graph of f is not under the chord joining
(x, f(x)) and (y, f(y)); that is,

f (t) ≥ [f (y)− f (x)]h
(
t− x
y − x

)
+ f (x) = L(t;h),

for all such x, y ∈ I ∩ J . In other words, the function

g (t) = f (t)− [f (y)− f (x)]h
(
t− x
y − x

)
− f (x) , t ∈ I
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satisfies M = sup {g (t) : t ∈ [x, y]} > 0. Since h (0) = 0 and h (1) = 1, then
L (x;h) = f (x) and L (y;h) = f (y), so that the h-cord L agrees with f at
endpoints x, y. Thus, g is continuous and g(x) = g(y) = 0, direct computation
shows that g is also mid h-convex. Setting c = inf {t ∈ [x, y] : g (t) =M}, then
necessarily g(c) = M and c ∈ (x, y). By the definition of c, for every p > 0 for
which c ± p ∈ (a, b), we have g (c− p) < g (c) and g (c+ p) < g (c), so that
since h (α) ≥ α, for all α ∈ (0, 1) we have

g (c− p) + g (c+ p) < 2g (c) =
1
1
2

g (c) ≤ 1
h
( 1

2

)g (c) ,
which contradicts the fact that g is mid h-convex.

Corollary 2.4. Let h : J → (0,∞) be a non-negative function such that h (α) ≤
α, for all α ∈ (0, 1). Let f : I → R+ be a nonnegative continuous function. f is
h-concave if and only if it is h-midconcave.

We often need to know how fast limits are converging, and this allows us to
control the remainder of a given function in a neighborhood of some point x0. So
that, we need to extend the concept of continuity. Fortunately, in control theory
and numerical analysis, a function h : J ⊆ [0,∞) → [0,∞] is called a control
function if

(i) h is nondecreasing,

(ii) infδ>0 h (δ) = 0.

A function f : I → R is h-continuous at x0 if |f (x)− f (x0)| ≤ h (|x− x0|),
for all x ∈ I . Furthermore, a function is continuous in x0 if it is h-continuous for
some control function h.

This approach leads us to refining the notion of continuity by restricting the set
of admissible control functions.

For a given set of control functions C a function is C-continuous if it is h-
continuous for all h ∈ C. For example the Hölder continuous functions of order
α ∈ (0, 1] are defined by the set of control functions

C(α)H (h) = {h|h (δ) = H |δ|α , H > 0} .

In case α = 1, the set C(1)H (h) contains all functions satisfying the Lipschitz con-
dition.

Theorem 2.5. Let (0, 1) ⊆ J , h : J → (0,∞) be a control function which is super
multiplicative such that h(α) ≥ α for each α ∈ (0, 1). Let I be a real interval,
a, b ∈ R (a < b) with a, b in I◦ (the interior of I). If f : I → R is non-negative
h-convex function on [a, b], then f is h-continuous on [a, b].
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Proof. Choose ε > 0 be small enough such that (a− ε, b+ ε) ⊆ I and let

mε := inf {f (x) , x ∈ (a− ε, b+ ε)}

and

Mε := sup {f (x) , x ∈ (a− ε, b+ ε)} ,

such that h (ε) = Mε −mε. If x, y ∈ [a, b], such that x = y + ε
|y−x| (y − x) and

λε =
|y−x|
ε+|y−x| . Then for z ∈ [a− ε, b+ ε], y = λεz + (1− λε)x, we have

f (y) = f (λεz + (1− λε)x) ≤ λεf (z) + (1− λε) f (x)
≤ λε [f (z)− f (x)] + f (x) ≤ h (λε) [f (z)− f (x)] + f (x) ,

which implies that y = λεz + (1− λε)x, we have

f (y)− f (x) ≤ h (λε) [f (z)− f (x)] ≤ h (λε) (Mε −mε)

< h

(
|y − x|
ε

)
(Mε −mε)

<
h (|y − x|)
h (ε)

(Mε −mε)

= h (|y − x|) .

Since this is true for any x, y ∈ [a, b], we conclude that

|f (y)− f (x)| ≤ h (|y − x|) ,

which shows that f is h-continuous on [a, b] as desired.

Another Proof. Alternatively, if one replaces the condition h(α) + h(1− α) ≤ 1
for each α ∈ (0, 1) instead of h(α) ≥ α in Theorem 2.5. Then by repeating the
same steps in the above proof, we have

f (y) = f (λεz + (1− λε)x) ≤ h (λε) f (z) + h (1− λε) f (x)
≤ h (λε) f (z) + [1− h (λε)] f (x)

(since h (1− λε) ≤ 1− h (λε))
= h (λε) [f (z)− f (x)] + f (x) ,
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which implies that y = λεz + (1− λε)x, we have

f (y)− f (x) ≤ h (λε) [f (z)− f (x)] ≤ h (λε) (Mε −mε)

< h

(
|y − x|
ε

)
(Mε −mε)

<
h (|y − x|)
h (ε)

(Mε −mε)

= h (|y − x|) .

Since this is true for any x, y ∈ [a, b], we conclude that |f (y)− f (x)| ≤ h (|y − x|),
which shows that f is h-continuous on [a, b]. Surely, this is can be considered as
an alternative proof of Theorem 2.5.

It’s well known that if f is twice differentiable then f is convex if and only
if f ′′ ≥ 0. In a convenient way Pinheiro in [29] proposed that f is an s-convex
(in the second sense) if and only if f ′′ ≥ 1 − 21−s. Indeed, Pinheiro presented a
“proof" to her result, however we can say without doubt that she introduced some
good thoughts rather than formal mathematical proof. Following the same way
in [29] and in viewing the presented discussion in the introduction we conjecture
that:

Conjecture 2.6. Let h : J → (0,∞) be a non-negative function such that h (α) ≥
α, for all α ∈ (0, 1), and consider f : I → R be a twice differentiable function. A
function f is h-convex if and only if f ′′ (x) ≥ 1− 2h

( 1
2

)
.
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