A note on \boldsymbol{h}-convex functions

Mohammad W. Alomari
Communicated by Sergey Astashkin

Abstract

In this work, we discuss the continuity of h-convex functions by introducing the concepts of h-convex curves (h-cord). Geometric interpretation of h-convexity is given. The fact that for a h-continuous function f, is being h-convex if and only if is h-midconvex is proved. Generally, we prove that if f is h-convex then f is h-continuous. A discussion regarding derivative characterization of h-convexity is also proposed.

Keywords. h-Convex function, Hölder continuous.
2010 Mathematics Subject Classification. 26A15, 26A16, 26A51.

1 Introduction

Let I be a real interval. A function $f: I \rightarrow \mathbb{R}$ is called convex iff

$$
\begin{equation*}
f(t \alpha+(1-t) \beta) \leq t f(\alpha)+(1-t) f(\beta) \tag{1}
\end{equation*}
$$

for all points $\alpha, \beta \in I$ and all $t \in[0,1]$. If $-f$ is convex then we say that f is concave. Moreover, if f is both convex and concave, then f is said to be affine.

In 1979, Breckner [3] introduced the class of s-convex functions (in the second sense), as follows:

Definition 1.1. Let $I \subseteq[0, \infty)$ and $s \in(0,1]$, a function $f: I \rightarrow[0, \infty)$ is s-convex function or that f belongs to the class $K_{s}^{2}(I)$ if for all $x, y \in I$ and $t \in[0,1]$ we have

$$
\begin{equation*}
f(t x+(1-t) y) \leq t^{s} f(x)+(1-t)^{s} f(y) \tag{2}
\end{equation*}
$$

In the last years, among others, the notion of s-convex functions is discriminated and starred. In literature a few papers devoted to study this type of convexity. The building theories of s-convexity as geometric and analytic tools are still under consideration, development and examine. Due to Hudzik and Maligranda (1994) [15], two senses of s-convexity $(0<s \leq 1)$ of real-valued functions are known in the literature, and given below.

Definition 1.2. A function $f: \mathbb{R}_{+} \rightarrow \mathbb{R}$, where $\mathbb{R}_{+}=[0, \infty)$, is said to be s convex in the first sense if

$$
\begin{equation*}
f(\alpha x+\beta y) \leq \alpha^{s} f(x)+\beta^{s} f(y) \tag{3}
\end{equation*}
$$

for all $x, y \in[0, \infty), \alpha, \beta \geq 0$ with $\alpha^{s}+\beta^{s}=1$ and for some fixed $s \in(0,1]$. This class of functions is denoted by K_{s}^{1}.

This definition of s-convexity, for so called φ-functions, was introduced by Orlicz in 1961 and was used in the theory of Orlicz spaces. A function $f: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$ is said to be a φ-function if $f(0)=0$ and f is nondecreasing and continuous. The symbol φ stands for an Orlicz function, i.e., φ is defined on the real line \mathbb{R} with values in $[0,+\infty]$ and is convex, even, vanishing and continuous at zero. For further details see [15, 17, 18, 32].

Remark 1.3. We note that, it can be easily seen that for $s=1$, s-convexity (in both senses) reduces to the ordinary convexity of functions defined on $[0, \infty)$.

In general, a real-valued function f defined on an open convex subset C of a linear space is called Breckner s-convex if (2) holds for every $x, y \in C, \alpha, \beta \in$ $[0,1]$ with $\alpha+\beta=1$, where $s \in(0,1)$ is fixed. More preciously, Breckner considered an open convex subset \mathbb{M} of a linear space \mathbb{L} and defined $f: \mathbb{M} \subseteq$ $\mathbb{L} \rightarrow \mathbb{R}$, to be s-convex if (2) holds, for all $x, y \in \mathbb{M}$, $\alpha, \beta \in[0,1]$ with $\alpha+\beta=1$, where $s \in(0,1)$ is fixed. Also, Breckner considered a special case of s-convex functions which is so called rational s-convex, that is for all rational $\alpha, \beta \in[0,1]$ with $\alpha+\beta=1$ and points $x, y \in \mathbb{M}$, the inequality (2) holds. Furthermore, Breckner proved that for locally bounded above s-convex functions defined on open subsets of linear topological spaces are continuous and nonnegative.

In 1978, Breckner and Orbán [4] studied functions defined on a convex subset of complex Hausdorff topological linear space of dimension greater than 1 into an ordered topological linear space such that all its order-bounded subsets are bounded, and proved that Breckner s-convex functions with $s \in(0,1]$ are continuous on the interior of their domain.

In 1994, Breckner [5] (see also [6]) proved that for a rationally s-convex function continuity and local s-Hölder continuity are equivalent at each interior point of the domain of definition of the function. Furthermore, it is shown that a rationally s-convex function which is bounded on a nonempty open convex set is s-Hölder continuous on every compact subset of this set. Indeed, Breckner [4], showed that if a real-valued function defined on a convex subset of a linear space endowed with topology generated by a direct pseudonorm is continuous and rationally Breckner s-convex for an $s \in(0,1]$, then it is locally s-Hölder.

In 1994, Hudzik and Maligranda [15], realized the importance and undertook a systematic study of s-convex functions in both senses. They compared the notion of Breckner s-convexity with a similar one of [18]. A function f is Orlicz s-convex if the inequality (3) is satisfied for all α, β such that $\alpha^{s}+\beta^{s}=1$. Hudzik and Maligranda, among others, gave an example of a non-continuous Orlicz s-convex function, which is not Breckner s-convex.

In 2001, Pycia [24] established a direct proof of Breckner's result that Breckner s-convex real-valued functions on finite dimensional normed spaces are locally s Hölder. The same result was proved in [1] where different context was considered. For the same result regarding convexity see [7, 8].

In the 2008, Pinheiro [25] studied the class of K_{s}^{1} of s-convex functions and explained why the first s-convexity sense was abandoned by the literature in the field. In fact, Pinheiro, proposed some criticisms to the current way of presenting the definition of s-convex functions. We may summarize Pinheiro criticisms in the following points:
(i) What is the 'true' difference between convex and s-convex in both senses.
(ii) So far, Pinheiro did not find references, in the literature, to the geometry of an s-convex function, what, once more, makes it less clear to understand the difference between an s-convex and a convex function whilst there are clear references to the geometry of the convex functions.

In the same paper [25], Pinheiro revised the class of s-convexity in the first sense. In [26], Pinheiro proposed a geometric interpretation for this type of functions.

Definition 1.4. Let U be any subset of $[0, \infty)$. A function $f: X \rightarrow \mathbb{R}$, is said to be s-convex in the first sense if

$$
\begin{equation*}
f\left(\lambda x+\left(1-\lambda^{s}\right)^{1 / s} y\right) \leq \lambda^{s} f(x)+\left(1-\lambda^{s}\right) f(y) \tag{4}
\end{equation*}
$$

for all $x, y \in U$ and $\lambda \in[0,1]$.
The presented reason from Pinheiro to why s-convexity in the first sense got abandoned in the literature, is that, if one takes $x=y=\frac{1}{4}$ with $\alpha=\frac{1}{2}$ and $\beta=1$ for example, one gets that $\alpha x+\beta y=0.125+0.25=0.375$. So that, if $s=\frac{1}{2}$, then the value of $\alpha x+\beta y$ would lie outside of the interval $[x, y]$, on the contrary of this, the value of $\alpha x+\beta y$ would lie inside of the interval $[x, y]$ in case of convexity. With this the first sense of s-convexity becomes a close to the meaning of convexity and so the geometric explanation of s-convex function is easy to be
compared with the geometry of convex function if some further restrictions are imposed to it.
The proposed geometric description for s-convex curve in the first sense stated by Pinheiro [25-30] as follows:

Definition 1.5. A function $f: X \subset \mathbb{R}_{+} \rightarrow \mathbb{R}$ is called s-convex in the first sense if and only if one in two situations occur:

- $0<s_{1}<1, f$ then belonging to K_{s}^{1}, for $0<s \leq s_{1}$: The graph of f lies below (L), which is a convex curve between any two domain points with minimum distance of $\left(2^{-1}-2^{-1 / s}\right)$ (domain points distance), that is, for every compact interval $J \subset I$, where length of \mathbf{J} is greater than, or equal to $\left(2^{-1}-2^{-1 / s}\right)$ interval with boundary ∂J, it is true that

$$
\sup _{J}(L-f) \geq \sup _{\partial J}(L-f)
$$

and L is such that it is continuous, smooth, and, for each point x of L, defined in terms of ninety degrees intercepts with the straight line between the two points of the function, it is true that $1 \leq x \leq 2^{-1}+2^{-s}$, where 1 corresponds to the straight line height;

- f is convex.

In general, the class of s-convex functions in the second sense would incomplete concept without a geometric interpretations for it is behavior. Recently, Pinheiro devoted her efforts to give a clear geometric definition for s-convexity in second sense. In [27] Pinheiro successfully proposed a geometric description for s-convex curve, as follows:

Definition 1.6. f is called s-convex in the second sense if and only if one in two situations occur:

- $0<s_{1}<1, f$ then belonging to K_{s}^{2}, for $0<s \leq s_{1}$: The graph of f lies below (L), which is a convex curve between any two domain points with minimum distance of $\left(2^{-s}-2^{-1}\right)$ (domain points distance), that is, for every compact interval $J \subset I$, where length of \mathbf{J} is greater than, or equal to $\left(2^{-s}-2^{-1}\right)$ interval with boundary ∂J, it is true that

$$
\sup _{J}(L-f) \geq \sup _{\partial J}(L-f)
$$

and L is such that it is continuous, smooth, and, for each point x of L, defined in terms of ninety degrees intercepts with the straight line between the two
points of the function, it is true that $1 \leq x \leq 2^{1-s}$, where 1 corresponds to the straight line height;

- f is convex.

More geometrically, an interpretation of s-convex functions is introduced as follows:

Definition 1.7. f is called s-convex, $0<s<1, f \geq 0$, if the graph of f lies below a 'bent chord' L between any two points. That is, for every compact interval $J \subset I$, with boundary ∂J, it is true that

$$
\sup _{J}(L-f) \geq \sup _{\partial J}(L-f) .
$$

Indeed the geometric view for s-convex mapping of second sense is going through which Pinheiro called it 'limiting curve', which is going to distinguish curves that are s-convex of second sense from those that are not. After that, Pinheiro obtained how the choice of ' s ' affects the limiting curve. In general a 'limiting curve' may be described by a bent chord joining $f(x)$ to $f(y)$-corresponding to the verification of the s-convexity property of the function f in the interval $[x, y]$-forms representing the limiting height for the curve f to be at, limit included, in case f is s-convex. This curve is represented by $\lambda^{s} f(x)+(1-\lambda)^{s} f(y)$, for each $0<s<1$.
Some properties of the limiting curve such as: maximum height, length, and local inclination are considered in [26-29].

- Height. The maximum of the limiting s-curve is 2^{1-s}.
- Length. Let $f(\lambda)=\lambda^{s} X+(1-\lambda)^{s} Y$, with $X=f(x)$, and $Y=f(y)$. The size of the limiting curve from $f(x)$ to $f(y)$ is

$$
L(\lambda)=\int_{0}^{1} \sqrt{1+s^{2} \lambda^{2 s-2}+s^{2}(1-\lambda)^{2 s-2}-2 s^{2} \lambda^{s-1}(1-\lambda)^{s-1}} d \lambda
$$

which shows that how bent is the limiting curve.

- Local inclination. The local inclination of the limiting curve may be founded by means of the first derivative, consider $f(\lambda)=\lambda^{s} f(x)+(1-\lambda)^{s} f(y)$, Therefore, the inclination is $f^{\prime}(\lambda)=s \lambda^{s-1} f(x)-s(1-\lambda)^{s-1} f(y)$ and varies accordingly to the value of λ.

In 1985, E. K. Godunova and V. I. Levin (see [13] or [20, pp. 410-433]) introduced the following class of functions:

Definition 1.8. We say that $f: I \rightarrow \mathbb{R}$ is a Godunova-Levin function or that f belongs to the class $Q(I)$ if for all $x, y \in I$ and $t \in(0,1)$ we have

$$
f(t x+(1-t) y) \leq \frac{f(x)}{t}+\frac{f(y)}{1-t}
$$

In the same work, the authors proved that all nonnegative monotonic and nonnegative convex functions belong to this class. For related works see [12, 19].

In 1999, Pearce and Rubinov [23], established a new type of convex functions which is called P-functions.

Definition 1.9. We say that $f: I \rightarrow \mathbb{R}$ is P-function or that f belongs to the class $P(I)$ if for all $x, y \in I$ and $t \in[0,1]$ we have

$$
f(t x+(1-t) y) \leq f(x)+f(y)
$$

Indeed, $Q(I) \supseteq P(I)$ and for applications it is important to note that $P(I)$ also consists only of nonnegative monotonic, convex and quasi-convex functions. A related work was considered in $[12,34]$.

In 2007, Varošanec [35] introduced the class of h-convex functions which generalize convex, s-convex, Godunova-Levin functions and P-functions. Namely, the h-convex function is defined as a non-negative function $f: I \rightarrow \mathbb{R}$ which satisfies

$$
\begin{equation*}
f(t \alpha+(1-t) \beta) \leq h(t) f(\alpha)+h(1-t) f(\beta) \tag{5}
\end{equation*}
$$

where h is a non-negative function, $t \in(0,1) \subseteq J$ and $x, y \in I$, where I and J are real intervals such that $(0,1) \subseteq J$. Accordingly, some properties of h convex functions were discussed in the same work of Varošanec. For more results; generalization, counterparts and inequalities regarding h-convexity see [2, 9-11, $14,16,22]$.

2 On h-convex functions

Throughout this work, I and J are two intervals subset of $(0, \infty)$ such that $(0,1) \subseteq$ J and $[a, b] \subseteq I$ with $0<a<b$.

Definition 2.1. The h-cord joining any two points $(x, f(x))$ and $(y, f(y))$ on the graph of f is defined to be

$$
\begin{equation*}
L(t ; h):=[f(y)-f(x)] h\left(\frac{t-x}{y-x}\right)+f(x) \tag{6}
\end{equation*}
$$

for all $t \in[x, y] \subseteq \mathcal{I}$. In particular, if $h(t)=t$ then we obtain the well known form of chord, which is

$$
L(t ; t):=\frac{f(y)-f(x)}{y-x}(t-x)+f(x)
$$

It's worth to mention that, if $h(0)=0$ and $h(1)=1$, then $L(x ; h)=f(x)$ and $L(y ; h)=f(y)$, so that the h-cord L agrees with f at endpoints x, y, and this true for all such $x, y \in I$.

The h-convexity of a function $f: I \rightarrow \mathbb{R}$ means geometrically that the points of the graph of f are on or below the h-chord joining the endpoints $(x, f(x))$ and $(y, f(y))$ for all $x, y \in I, x<y$. In symbols, we write

$$
f(t) \leq[f(y)-f(x)] h\left(\frac{t-x}{y-x}\right)+f(x)=L(t ; h)
$$

for any $x \leq t \leq y$ and $x, y \in I$.

Figure 1. The graph of $h_{k}(t)=t^{k}, k=\frac{1}{2}, 1, \frac{3}{2}$ (green, black, blue), respectively, and $f(t)=t^{2}(\mathrm{red}), t \in[0,1]$.

Hence, (5) means geometrically that for a given three non-collinear points P, Q and R on the graph of f with Q between P and R (say $P<Q<R$). Let h is super(sub)multiplicative and $h(\alpha) \geq(\leq) \alpha$, for $\alpha \in(0,1) \subset J$. A function f is h-convex (concave) if Q is on or below (above) the h-chord $\widehat{P R}$ (see Figure 1).

Caution: In special case, for $h_{k}(t)=t^{k}, t \in(0,1)$ the proposed geometric interpretation is valid for $k \in(-1,0) \cup(0, \infty)$. In the case that $k \leq-1$ or $k=0$ the geometric meaning is inconclusive so we exclude this case (and (and similar cases) from our proposal above.

Definition 2.2. Let $h: J \rightarrow(0, \infty)$ be a non-negative function. Let $f: I \rightarrow \mathbb{R}$ be any function. We say f is h-midconvex (h-midconcave) if

$$
f\left(\frac{x+y}{2}\right) \leq(\geq) h\left(\frac{1}{2}\right)[f(x)+f(y)]
$$

for all $x, y \in I$.
In particular, f is locally h-midocnvex if and only if

$$
h\left(\frac{1}{2}\right)[f(x+p)+f(x-p)]-f(x) \geq 0
$$

for all $x \in(x-p, x+p), p>0$.
A generalization of Jensen characterization of convex functions could be stated as follows:

Theorem 2.3. Let $h: J \rightarrow(0, \infty)$ be a non-negative function such that $h(\alpha) \geq \alpha$, for all $\alpha \in(0,1)$. Let $f: I \rightarrow \mathbb{R}_{+}$be a nonnegative continuous function. f is h-convex if and only if it is h-midconvex; i.e., the inequality

$$
f\left(\frac{x+y}{2}\right) \leq h\left(\frac{1}{2}\right)[f(x)+f(y)]
$$

holds for all $x, y \in I$.
Proof. The first direction follows directly by definition of h-convexity. To prove the second direction, suppose on the contrary that f is not h-convex. Then, there exists a subinterval $[x, y]$ such that the graph of f is not under the chord joining $(x, f(x))$ and $(y, f(y))$; that is,

$$
f(t) \geq[f(y)-f(x)] h\left(\frac{t-x}{y-x}\right)+f(x)=L(t ; h)
$$

for all such $x, y \in I \cap J$. In other words, the function

$$
g(t)=f(t)-[f(y)-f(x)] h\left(\frac{t-x}{y-x}\right)-f(x), \quad t \in I
$$

satisfies $M=\sup \{g(t): t \in[x, y]\}>0$. Since $h(0)=0$ and $h(1)=1$, then $L(x ; h)=f(x)$ and $L(y ; h)=f(y)$, so that the h-cord L agrees with f at endpoints x, y. Thus, g is continuous and $g(x)=g(y)=0$, direct computation shows that g is also mid h-convex. Setting $c=\inf \{t \in[x, y]: g(t)=M\}$, then necessarily $g(c)=M$ and $c \in(x, y)$. By the definition of c, for every $p>0$ for which $c \pm p \in(a, b)$, we have $g(c-p)<g(c)$ and $g(c+p)<g(c)$, so that since $h(\alpha) \geq \alpha$, for all $\alpha \in(0,1)$ we have

$$
g(c-p)+g(c+p)<2 g(c)=\frac{1}{\frac{1}{2}} g(c) \leq \frac{1}{h\left(\frac{1}{2}\right)} g(c),
$$

which contradicts the fact that g is mid h-convex.
Corollary 2.4. Let $h: J \rightarrow(0, \infty)$ be a non-negative function such that $h(\alpha) \leq$ α, for all $\alpha \in(0,1)$. Let $f: I \rightarrow \mathbb{R}_{+}$be a nonnegative continuous function. f is h-concave if and only if it is h-midconcave.

We often need to know how fast limits are converging, and this allows us to control the remainder of a given function in a neighborhood of some point x_{0}. So that, we need to extend the concept of continuity. Fortunately, in control theory and numerical analysis, a function $h: J \subseteq[0, \infty) \rightarrow[0, \infty]$ is called a control function if
(i) h is nondecreasing,
(ii) $\inf _{\delta>0} h(\delta)=0$.

A function $f: I \rightarrow \mathbb{R}$ is h-continuous at x_{0} if $\left|f(x)-f\left(x_{0}\right)\right| \leq h\left(\left|x-x_{0}\right|\right)$, for all $x \in I$. Furthermore, a function is continuous in x_{0} if it is h-continuous for some control function h.

This approach leads us to refining the notion of continuity by restricting the set of admissible control functions.

For a given set of control functions \mathcal{C} a function is \mathcal{C}-continuous if it is h continuous for all $h \in \mathcal{C}$. For example the Hölder continuous functions of order $\alpha \in(0,1]$ are defined by the set of control functions

$$
\mathcal{C}_{H}^{(\alpha)}(h)=\left\{\left.h|h(\delta)=H| \delta\right|^{\alpha}, H>0\right\} .
$$

In case $\alpha=1$, the set $\mathcal{C}_{H}^{(1)}(h)$ contains all functions satisfying the Lipschitz condition.

Theorem 2.5. Let $(0,1) \subseteq J, h: J \rightarrow(0, \infty)$ be a control function which is super multiplicative such that $h(\alpha) \geq \alpha$ for each $\alpha \in(0,1)$. Let I be a real interval, $a, b \in \mathbb{R}(a<b)$ with a, b in I° (the interior of I). If $f: I \rightarrow \mathbb{R}$ is non-negative h-convex function on $[a, b]$, then f is h-continuous on $[a, b]$.

Proof. Choose $\epsilon>0$ be small enough such that $(a-\epsilon, b+\epsilon) \subseteq I$ and let

$$
m_{\epsilon}:=\inf \{f(x), x \in(a-\epsilon, b+\epsilon)\}
$$

and

$$
M_{\epsilon}:=\sup \{f(x), x \in(a-\epsilon, b+\epsilon)\}
$$

such that $h(\epsilon)=M_{\epsilon}-m_{\epsilon}$. If $x, y \in[a, b]$, such that $x=y+\frac{\epsilon}{|y-x|}(y-x)$ and $\lambda_{\epsilon}=\frac{|y-x|}{\epsilon+|y-x|}$. Then for $z \in[a-\epsilon, b+\epsilon], y=\lambda_{\epsilon} z+\left(1-\lambda_{\epsilon}\right) x$, we have

$$
\begin{gathered}
f(y)=f\left(\lambda_{\epsilon} z+\left(1-\lambda_{\epsilon}\right) x\right) \leq \lambda_{\epsilon} f(z)+\left(1-\lambda_{\epsilon}\right) f(x) \\
\leq \lambda_{\epsilon}[f(z)-f(x)]+f(x) \leq h\left(\lambda_{\epsilon}\right)[f(z)-f(x)]+f(x)
\end{gathered}
$$

which implies that $y=\lambda_{\epsilon} z+\left(1-\lambda_{\epsilon}\right) x$, we have

$$
\begin{aligned}
f(y)-f(x) \leq h\left(\lambda_{\epsilon}\right)[f(z)-f(x)] & \leq h\left(\lambda_{\epsilon}\right)\left(M_{\epsilon}-m_{\epsilon}\right) \\
& <h\left(\frac{|y-x|}{\epsilon}\right)\left(M_{\epsilon}-m_{\epsilon}\right) \\
& <\frac{h(|y-x|)}{h(\epsilon)}\left(M_{\epsilon}-m_{\epsilon}\right) \\
& =h(|y-x|) .
\end{aligned}
$$

Since this is true for any $x, y \in[a, b]$, we conclude that

$$
|f(y)-f(x)| \leq h(|y-x|)
$$

which shows that f is h-continuous on $[a, b]$ as desired.

Another Proof. Alternatively, if one replaces the condition $h(\alpha)+h(1-\alpha) \leq 1$ for each $\alpha \in(0,1)$ instead of $h(\alpha) \geq \alpha$ in Theorem 2.5. Then by repeating the same steps in the above proof, we have

$$
\begin{aligned}
f(y)=f\left(\lambda_{\epsilon} z+\left(1-\lambda_{\epsilon}\right) x\right) & \leq h\left(\lambda_{\epsilon}\right) f(z)+h\left(1-\lambda_{\epsilon}\right) f(x) \\
& \leq h\left(\lambda_{\epsilon}\right) f(z)+\left[1-h\left(\lambda_{\epsilon}\right)\right] f(x) \\
\left(\text { since } h\left(1-\lambda_{\epsilon}\right)\right. & \left.\leq 1-h\left(\lambda_{\epsilon}\right)\right) \\
& =h\left(\lambda_{\epsilon}\right)[f(z)-f(x)]+f(x),
\end{aligned}
$$

which implies that $y=\lambda_{\epsilon} z+\left(1-\lambda_{\epsilon}\right) x$, we have

$$
\begin{aligned}
f(y)-f(x) \leq h\left(\lambda_{\epsilon}\right)[f(z)-f(x)] & \leq h\left(\lambda_{\epsilon}\right)\left(M_{\epsilon}-m_{\epsilon}\right) \\
& <h\left(\frac{|y-x|}{\epsilon}\right)\left(M_{\epsilon}-m_{\epsilon}\right) \\
& <\frac{h(|y-x|)}{h(\epsilon)}\left(M_{\epsilon}-m_{\epsilon}\right) \\
& =h(|y-x|) .
\end{aligned}
$$

Since this is true for any $x, y \in[a, b]$, we conclude that $|f(y)-f(x)| \leq h(|y-x|)$, which shows that f is h-continuous on $[a, b]$. Surely, this is can be considered as an alternative proof of Theorem 2.5.

It's well known that if f is twice differentiable then f is convex if and only if $f^{\prime \prime} \geq 0$. In a convenient way Pinheiro in [29] proposed that f is an s-convex (in the second sense) if and only if $f^{\prime \prime} \geq 1-2^{1-s}$. Indeed, Pinheiro presented a "proof" to her result, however we can say without doubt that she introduced some good thoughts rather than formal mathematical proof. Following the same way in [29] and in viewing the presented discussion in the introduction we conjecture that:

Conjecture 2.6. Let $h: J \rightarrow(0, \infty)$ be a non-negative function such that $h(\alpha) \geq$ α, for all $\alpha \in(0,1)$, and consider $f: I \rightarrow \mathbb{R}$ be a twice differentiable function. A function f is h-convex if and only if $f^{\prime \prime}(x) \geq 1-2 h\left(\frac{1}{2}\right)$.

Bibliography

[1] M. W. Alomari, M. Darus, S. S. Dragomir and U. Kirmaci, On fractional differentiable s-convex functions, Jordan J. Math and Stat. 3(1) (2010), 33-42.
[2] M. Bombardelli and S. Varošanec, Properties of h-convex functions related to the Hermite-Hadamard-Fejér inequalities, Compute. Math. Applica. 58(9) (2009), 18691877.
[3] W. W. Breckner, Stetigkeitsaussagen für eine Klasse verallgemeinerter konvexer funktionen in topologischen linearen Räumen, Publ. Inst. Math. 23 (1978), 13-20 (in German).
[4] W. W. Breckner and G. Orban, Continuity Properties of Rationally s-convex Mappings with Values in an Ordered Topological Linear Space, Babes-Bolyai University, ClujNapocoi, 1978.
[5] W. W. Breckner, Hölder-continuity of certain generalized convex functions, Optimization 28 (1994), 201-209.
[6] W. W. Breckner, Rational s-convexity, a Generalized Jensen-convexity, Cluj University Press, Cluj-Napoca, 2011.
[7] S. Cobzas and I. Muntean, Continuous and locally Lipschitz convex functions, Mathematica Rev. d'Anal. Numér. et de Théorie de I'Approx., Ser. Mathematica 18(41) (1976), 41-51.
[8] S. Cobzas, On the Lipschitz properties of continuous convex functions, Mathematlca Ret. d'Anal. Numér. et de Théorie de I'Approx., Ser. Mathemarica 21(44) (1979), 123125.
[9] M. V. Cortez, Relative strongly h-convex functions and integral inequalities, Appl. Math. Inf. Sci. Lett. 4(2) (2016), 39-45.
[10] S. S. Dragomir, Inequalities of Jensen type for h-convex functions on linear spaces, Math. Moravica 19(1) (2015), 107-121.
[11] S. S. Dragomir, Inequalities of Hermite-Hadamard type for h-convex functions on linear spaces, Proyecciones J. Math. 34(4), (2015) 323-341.
[12] S. S. Dragomir, J. Pečarić and L. E. Persson, Some inequalities of Hadamard type, Soochow J. Math. 21 (1995), 335-341.
[13] E. K. Godunova and V. I. Levin, Neravenstva dlja funkcii širokogo klassa, soderžaščego vypuklye, monotonnye i nekotorye drugie vidy funkcii, Vyčislitel. Mat. i. Mat. Fiz. Mežvuzov. Sb. Nauk. Trudov, MGPI, Moskva, 1985, pp. 138-142 (in Russian).
[14] A. Házy, Bernstein-doetsch type results for h-convex functions, Math. Inequal. Appl. 14(3) (2011), 499-508.
[15] H. Hudzik and L. Maligranda, Some remarks on s-convex functions, Aequationes Math. 48 (1994), 100-111.
[16] M. Matłoka, On Hadamard's inequality for h-convex function on a disk, Appl. Math. Comp. 235 (2014), 118-123.
[17] J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Mathematics, Springer-Verlag, Berlin Heidelberg, 1983.
[18] W. Matuszewska and W. Orlicz, A note on the theory of s-normed spaces of ψ integrable functions, Studia Math. 21 (1981), 107-115.
[19] D. S. Mitrinović and J. Pečarić, Note on a class of functions of Godunova and Levin, C. R. Math. Rep. Acad. Sci. Can. 12 (1990), 33-36.
[20] D.S. Mitrinović, J. Pečarić and A. M. Fink, Classical and New Inequalities in Analysis, Kluwer Academic, Dordrecht, 1993.
[21] C. P. Niculescu and L. E. Persson, Convex Functions and Their Applications. A Contemporary Approach, CMS Books Math., Vol. 23, Springer-Verlag, New York, 2006.
[22] A. Olbryś, Representation theorems for h-convexity, J. Math. Anal. Appl 426(2) (2015), 986-994.
[23] C. E. M. Pearce and A. M. Rubinov, P-functions, quasi-convex functions and Hadamard-type inequalities, J. Math. Anal. Appl. 240 (1999), 92-104.
[24] M. Pycia, A direct proof of the s-Hölder continuity of Breckner s-convex functions, Aequationes Math. 61(1-2) (2001), 128-130.
[25] M. R. Pinheiro, Convexity Secrets, Trafford Publishing, 2008.
[26] M. R. Pinheiro, Exploring the concept of s-convexity, Aequationes Mathematicae 74(3) (2007), 201-209.
[27] M. R. Pinheiro,Hudzik and Maligranda's s-convexity as a local approximation to convex functions, Preprint, 2008.
[28] M. R. Pinheiro, Hudzik and Maligranda's s-convexity as a local approximation to convex functions II, Preprint, 2008.
[29] M. R. Pinheiro, Hudzik and Maligranda's s-convexity as a local approximation to convex functions III, Preprint, 2008.
[30] M. R. Pinheiro, H-H Inequality for s-Convex Functions, Inter. J. P. Appl. Math. 44(4) (2008), 563-579.
[31] A. W. Roberts and D. E. Varberg, Convex Functions, Academic Press, New York, 1973.
[32] S. Rolewicz, Metric Linear Spaces, 2nd ed., PWN, Warsaw, 1984.
[33] T. Trif, Hölder continuity of generalized convex set-valued mappings, J. Math. Anal. Appl. 255 (2001), 44-57.
[34] K.-L. Tseng, G.-S. Yang and S. S. Dragomir, On quasi convex functions and Hadamard's inequality, Demonsrtatio Mathematics XLI(2) (2008), 323-335.
[35] S. Varošanec, On h-convexity, J. Math. Anal. Appl. 326 (2007), 303-311.

Received February 6, 2019; revised May 17, 2019; accepted August 4, 2019.

Author information

Mohammad W. Alomari, Department of Mathematics, Faculty of Science and Information Technology, Irbid National University, 2600 Irbid 21110, Jordan. E-mail: mwomath@gmail.com

