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Abstract. A linear first order ordinary differential equation (ODE) with a positive param-
eter ε and a multipoint nonlocal initial value condition (NLIVC) is considered. The
existence of a classical solution of the multipoint nonlocal initial value problem (NLIVP)
is proved. A uniform on ε a priori estimate and asymptotic expansion of smooth solu-
tion is obtained. The differential problem with integral kind of NLIVC is considered and
reduced to appropriate multipoint NLIVP.
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1 Introduction

A large number of different works in the field of differential equations on a small
parameter were strongly motivated by the classical article of A.N. Tikhonov [1].
General approach for an asymptotic expansion in terms of a small parameter was
described by M.I. Vishik and L.A. Lyusternik in their outstanding joint paper [2].

A lot of works in the field of nonlocal boundary value problems were stimulated
by the famous paper of A.V. Bitsadze and A.A. Samarskii [3]. The differential and
difference interpretations of nonlocal boundary value problems were considered
by V.A. Il’in and E.I. Moiseev [4–6] for the Sturm-Lioville operator and the
Poisson’s equation.

These fields of research remain relevant. For this reason our original paper
deals with NLIVP for ODE with a positive parameter at the derivative. Actually,
topical works by A.B. Vasil’eva, V.F. Butuzov, A. Ashyralyev, P.E. Sobolevskii,
E.P. Doolan, J.J.H. Miller, W.H.A. Schilders [7–9] and other papers [10–12]
influenced the author’s investigation.

The approach of our original article is based on works [13–15] in general. We
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establish a uniform on a parameter a priori estimate for the classical solution of
NLIVP and obtain an appropriate asymptotic expansion of the smooth solution in
terms of a small parameter.

We consider a multipoint NLIVP1 with a parameter ε > 0

εu′(x) + a(x)u(x) = f(x), x > 0, u(0)−
n∑
k=1

αku(ζk) = φ

for ζk ∈ (0, X), X > 0 and αk ∈ R, k = 1, · · · , n, φ ∈ R.
For the classical solution of the Cauchy problem

εu′(x) + a(x)u(x) = f(x), x > 0, u(0) = φ

with smooth functions f(x) and a(x), a(x) ≥ a > 0, ∀ x ≥ 0, the a priori
estimate

|u(x)| ≤ C(|φ|+ max
0≤t≤X

|f(t)|), 0 ≤ x ≤ X

is a uniform on ε and independent on x [9, p. 13-14].
In this paper, we establish a uniform on ε a priori estimate for the smooth solu-

tion of NLIVP. The NLIVP is considered under specific conditions concerning
the values and signs of the corresponding coefficients αk, k = 1, · · · , n and
the layout of the nonlocal points ζk, k = 1, · · · , n. Generally, NLIVP with
αk, k = 1, · · · , n having the same sign is considered in Section 2. The corre-
sponding NLIVP with αk, k = 1, · · · , n having different signs is considered
in Section 3. An integral kind of NLIVC is considered in Section 4. Finally,
an appropriate asymptotic expansion of the solution in terms of a small parameter
is considered in Section 5.

2 Multipoint problem with NLIVC having the same sign factors

Consider NLIVP

Lu ≡ εu′(x) + a(x)u(x) = f(x), x > 0, (1)

`u ≡ u(0)−
n∑
k=1

αku(ζk) = φ (2)

for smooth functions f(x) and a(x), a(x) ≥ a > 0 for x ≥ 0, ε > 0,
αk 6= 0 for k = 1, · · · , n and 0 < ζ1 < ζ2 < · · · < ζn < X , X ∈ R, φ ∈ R.

Definition 2.1. A parameter value ε∗ is called a critical parameter2, if NLIVP
1 We use the term "nonlocal initial value problem" for considering in this paper problems. By

this we follow [4, 5] where the term "first" and "second kind" were introduced for NLBVP’s.
2 Here and throughout the paper, the symbol ε∗ denotes the critical parameter by default.
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(1), (2) has not the unique solution for ε = ε∗.

Lemma 2.2. The classical solution of NLIVP (1), (2) exists for some value of ε

if and only if `ω(ε) 6= 0 for ` defined by (2) and ω(x) = exp(−ε−1
x∫
0
a(t)dt).

Proof. Using the variation of constants method, we have a formal representation
for the solution of the NLIVP (1), (2)

u(x) = ω(x)[C + ε−1

x∫
0

ω−1(τ)f(τ)dτ ]

with

C = [`ω(ε)]−1[φ+ ε−1
n∑
k=1

αkω(ζk)

ζk∫
0

ω−1(τ)f(τ)dτ ].

Therefore, the constant C is uniquely determined if and only if `ω(ε) 6= 0
because if `ω(ε) = 0, then C is undefinable or equal to an arbitrary real number
alternatively. Lemma 2.2 is proved.

Lemma 2.3. If αk, k = 1, · · · , n have arbitrary signs and if
n∑
k=1

αk > 1 for

NLIVP (1), (2), then a critical parameter exists.

Proof. Actually, `ω(ε) = 1 −
n∑
k=1

αk exp(−ε−1
ζk∫
0
a(t)dt) is the function of ε

for ε ∈ (0,∞). Note that limε→0 `ω(ε) = 1, but limε→∞ `ω(ε) = 1−
n∑
k=1

αk.

Since the function `ω(ε) is continuous on (0,∞), then it achieves zero at some
value ε = ε∗ ∈ (0,∞). Lemma 2.3 is proved.

Lemma 2.4. If all αk have the same sign for k = 1, 2, · · · , n, then NLIVP (1),
(2)

(i) has not a critical parameter if −∞ <
n∑
k=1

αk ≤ 1, i.e., the solution exists

∀ ε > 0;

(ii) has the unique critical parameter ε∗ if
n∑
k=1

αk > 1, i.e., the correspond-

ing solution exists for each ε 6= ε∗ and ε̌∗ ≤ ε∗ ≤ ε̂∗ for

ε̌∗ =

ζ1∫
0

a(t)dt/ ln
n∑
k=1

αk , ε̂
∗ =

ζn∫
0

a(t)dt/ ln
n∑
k=1

αk.
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Proof. Denote3 α =
n∑
k=1

αk. By virtue of Lemma 2.2 for the function

`ω(ε) = 1 −
n∑
k=1

αk exp(−ε−1
ζk∫
0
a(t)dt) we shall check whether `ω(ε) 6= 0

is true or not for the cases (i) and (ii).

(i). Since for ω(x) = exp(−ε−1
x∫
0
a(t)dt) we have ω(0) = 1, ω(x) > 0

∀x ≥ 0 and ω(x) is a strictly decreasing continuous function, then

`ω(ε) >

{
1 > 0 for −∞ < α ≤ 0,
1− αω(ζ1) > 0 for 0 < α ≤ 1.

Therefore, NLIVP (1), (2) has not a critical parameter if −∞ <
n∑
k=1

αk ≤ 1,

i.e., the solution exists for each ε > 0.
(ii). If α > 1, then by virtue of Lemma 2.3 the critical parameter exists.

Since [`ω(ε)]′ = −ε−2
n∑
k=1

αkω(ζk)
ζk∫
0
a(t)dt, then [`ω(ε)]′ < 0, so that `ω(ε)

is a strictly decreasing on (0,∞). Therefore, `ω(ε) achieves zero at only one
value ε∗ ∈ (0,∞), i.e., the critical parameter is unique.

Put `ω(ε) = 0 to determine the location of ε∗. Using the mean value (MV)

property [4, p. 1198] we obtain
n∑
k=1

αkω(ζk) = αω(ζε) for each ε > 0 and

for an appropriate point ζε ∈ [ζ1, ζn]. Since `ω(ε) = 1 − αω(ζε), then from

the equation `ω(ε) = 0 we get ε∗ =
ζε∗∫
0
a(t)dt/ lnα for some ζε∗ ∈ [ζ1, ζn].

Therefore,

ζ1∫
0
a(x)dx/ lnα ≤ ε∗ ≤

ζn∫
0
a(x)dx/ lnα .

Lemma 2.4 is proved.

Theorem 2.5. If all αk have the same sign for k = 1, 2, · · · , n, then for the
classical solution of NLIVP (1), (2) the uniform on ε and independent on x a
priori estimate holds

|u(x)| ≤ C(|φ|+ max
0≤t≤X

|f(t)|), 0 ≤ x ≤ X (3)

3 Throughout the paper α denotes the sum
n∑

k=1
αk by default.
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for each of the two cases:
(i) −∞ < α < 1 ∀ε > 0; α = 1, 0 < ε < Υ, ∀ Υ > 0,
(ii) 1 < α, 0 < ε ≤ ε̌, ε̌ = θζ1a/ lnα ∀ 0 < θ < 1.

Proof. The solution of NLIVP (1), (2) is represented by the sum u(x) = v(x)
+w(x), so that v(x) is a classical solution of the Cauchy problem{

Lv(x) = f(x) , x > 0 ,

v(0) = 0,
(4)

and w(x) is a smooth solution of an appropriate NLIVP{
Lw(x) = 0 , x > 0 ,

`w = φ− `v.
(5)

For the classical solution of the Cauchy problem (4), the corresponding uniform
on ε a priori estimate holds [9, p. 13-14]:

|v(x)| ≤ 1
a

max
0≤t≤X

|f(t)|, 0 ≤ x ≤ X. (6)

Therefore,

|`v| ≤ |α|
a

max
0≤t≤X

|f(t)| . (7)

Further, consider separately the cases (i) and (ii).
(i). By virtue of Lemma 2.4 the solution of NLIVP (1), (2) exists for all

ε > 0. Taking into account (6), to prove (3) it is sufficient to get a uniform on
ε a priori estimate for the solution of NLIVP (5). The solution of NLIVP (5) is
represented by the formula

w(x) = w(0)ω(x) , (8)

for ω(x) = exp(−ε−1
x∫
0
a(t)dt), so that

w(0) = (`ω)−1(φ− `v) . (9)

Since `ω(ε) = 1−
n∑
k=1

αkω(ζk), then

`ω(ε) >

{
1 > 0 for −∞ < α ≤ 0,
1− α > 0 for 0 < α < 1.
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Therefore,

|w(0)| ≤

{
|φ|+ |`v| for −∞ < α ≤ 0,
(1− α)−1(|φ|+ |`v|) for 0 < α < 1.

Then taking into account (7) we get a uniform on ε estimate

|w(0)| ≤ C1(|φ|+ max
0≤t≤X

|f(t)|)

for −∞ < α < 1 and C1 =const. Hence, using (8) and (9) we obtain a
uniform on ε a priori estimate for the solution of the problem (5)

|w(x)| ≤ C1(|φ|+ max
0≤t≤X

|f(t)|) , 0 ≤ x ≤ X (10)

for −∞ < α < 1. Therefore, if −∞ <
n∑
k=1

αk < 1, then a priori estimate (3)

successively follows from (6) and (10).

Put
n∑
k=1

αk = 1. Then applying the MV property for the left-hand side of (2)

we have u(0)− u(ζε) = φ for each ε > 0 and for an appropriate ζε ∈ [ζ1, ζn].
Therefore, u(x) = v(x) + w(x), so that v(x) is the solution of the Cauchy
problem (4) and w(x) is the solution of NLIVP (5) in terms of the two-point
NLIVC (2) `u ≡ u(0)−u(ζε) = φ. Since u(x) and v(x) exist, it is clear that
w(x) exists too. Because uniform on ε a priori estimate (6) holds for v(x),
then

|`v| ≤ 1
a

max
0≤t≤X

|f(t)| . (11)

Since `ω = 1−ω(ζε), then taking into account the behavior of `ω(ε) and ω(x)
(see Lemma 2.4) we obtain that 0 < ˇ̀ω(ε) < `ω(ε) for ˇ̀ω(ε) = 1 − ω(ζ1),
where ε ≤ Υ while an arbitrary real number Υ > 0. Therefore, [`ω(ε)]−1

≤ [ ˇ̀ω(ε)]−1. Since ˇ̀ω(ε) is positive and a strictly decreasing on (0,∞), then
from (9) it follows that

|w(0)| ≤ [ ˇ̀ω(Υ )]−1(|φ|+ |`v|).

Taking into account (11) we get

|w(0)| ≤ C2(|φ|+ max
0≤t≤X

|f(t)|)

for C2 = [ ˇ̀ω(Υ )]−1 max{1, 1/a}. Hence by applying (8) we obtain a uniform
on ε a priori estimate (10) for the solution of NLIVP (5). Therefore, a uniform
on ε a priori estimate (3) holds if α = 1, which is the desired result.
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(ii). For α > 1 by virtue of Lemma 2.4 the NLIVP (1), (2) has some

unique critical parameter ε∗ =
ζε∗∫
0
a(x)dx/ lnα, so that

ζ1∫
0
a(x)dx/ lnα ≤ ε∗ .

Therefore, the solution of NLIVP (1), (2) exists for all ε ∈ (0, ε̌] since ε̌ < ε∗

for ε̌ = θζ1a/ lnα, 0 < θ < 1. This solution is represented by the sum
u(x) = v(x) +w(x), so that v(x) and w(x) are the corresponding solutions
of the problems (4) and (5). Since (6) and (7) holds for v(x), then it is
sufficient to get a uniform on ε a priori estimate for w(x). Because `ω(ε) is
a strictly decreasing and continuous function on (0, ε̌], limε→0 `ω(ε) = 1 and
`ω(ε) > 0 on (0, ε̌], then taking into account (8) and (9) we get

|w(0| ≤ [`ω(ε)]−1(|φ|+ |`v|) ≤ [`ω(ε̌)]−1(|φ|+ |`v|).

Hence taking into account (7) we obtain uniform on ε estimate

|w(0)| ≤ C3(|φ|+ max
0≤t≤X

|f(t)|)

for C3 = [`ω(ε̌)]−1 max{1, α/a}. Using this estimate for w(x) as for the clas-
sical solution of an appropriate Cauchy problem Lw(x) = 0, x > 0, w(0) = γ
we get a uniform on ε and independent on x a priori estimate

|w(x)| ≤ C4(|φ|+ max
0≤t≤X

|f(t)|), 0 ≤ x ≤ X. (12)

Then a priori estimate (3) finally follows from (6) and (12). Theorem 2.5 is
proved.

Corollary 2.6. If all αk, k = 1, 2, · · · , n have a positive sign and α > 1, then
for the smooth solution of NLIVP (1), (2) uniform on ε and independent on x
a priori estimation (3) holds for ε ∈ (ε̂,∞), where ε̂ = ΘAζn/ lnα, Θ > 1
and A = max{a(x) ∀x ∈ [0, X]}.

Proof. In extending the above proof we need only to observe that since ε∗ < ε̂,
then `ω(ε) < `ω(ε̂) < 0 for all ε ∈ [ε̂,∞) (see also the proof for case (ii) of
Lemma 2.4) and therefore,

|w(0| ≤ |`ω(ε)|−1(|φ|+ |`v|) ≤ |`ω(ε̂)|−1(|φ|+ |`v|),

so that

|w(0)| ≤ C5(|φ|+ max
0≤t≤X

|f(t)|)
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for C5 = |`ω(ε̂)|−1 max{1, α/a}. Using this inequality we get analogously to
(12) a uniform on ε and independent on x a priori estimate. Corollary 2.6 is
proved.

The following examples show some particularities concerning the proved state-
ments.

Example 2.7. Exact critical parameter value. If α > 1 and n = 1, then
NLIVP (1), (2) with two-point value condition u(0) − αu(ζ) = φ has an exact

critical parameter (see Lemma 2.4) ε∗ =
ζ∫
0
a(x)dx/ lnα. For example, the

problem

εu′(x) + u(x) = 0 , x > 0 , u(0) = αu(ζ) + 1

has solution u(x) = [1−α exp(−ζ/ε)]−1 exp(−x/ε) if 1−α exp(−ζ/ε) 6= 0.
If −∞ < α < 1, then the solution is a uniform on ε for all ε > 0, so that

limε→∞ u(x) = 1/(1 − α) ∀x ≥ 0. However, if α = 1, then for arbitrary
x ≥ 0 limε→∞ u(x) = +∞.

If α > 1, then the solution exists for ε 6= ζ/ lnα, i.e., ε∗ = ζ/ lnα is
the exact critical parameter value. Particularly, if ε → ε∗ − 0, then u(x) →
+∞, but if ε → ε∗ + 0, then u(x) → −∞. In other words, the solution is
collapsing, i.e., does not exists at ε = ε∗ .

Example 2.8. Isolating interval for critical parameter. If α > 1 for all αk >
0, k = 1, · · · , n and n > 1, then NLIVP (1), (2) has some unique critical
parameter (Lemma 2.4), but it is not evaluated exactly. Actually, in order to
avoid such critical parameter we have to isolate it. In view of Theorem 2.5 and
Corollary 2.6 we choose ε̌ = θζ1a/ lnα for 0 < θ < 1, ε̂ = ΘA/ lnα for
Θ > 1 and A = max{a(x) ∀x ∈ [0, X]} to determine the isolating interval
(ε̌, ε̂).

For example, if φ+ α1 + α2 − 1 6= 0 , then the problem

εu′(x) + u(x) = 1 , x > 0 , u(0)− α1u(ζ1)− α2u(ζ2) = φ

has different from u(x) ≡ 1 unique solution

u(x) = [1−α1 exp(−ζ1/ε)−α2 exp(−ζ2/ε)]
−1(φ+α1 +α2−1) exp(−x/ε)+1

if 1−α1 exp(−ζ1/ε)−α2 exp(−ζ2/ε) 6= 0 . Put α = α1+α2 > 1 for α1 > 0
and α2 > 0, then formally

u(x) = [1− α exp(−ζε/ε)]−1(φ+ α− 1) exp(−x/ε) + 1
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for an appropriate ζε ∈ [ζ1, ζ2]. Hence for this critical parameter we have implicit
expression ε∗ = ζε∗/ lnα which does not allow to find its value exactly. How-
ever, we can bound it by an isolating interval if select ε̌ = θζ1/ lnα, 0 < θ < 1
and ε̂ = Θζ2/ lnα, Θ > 1. Outside of the isolating interval (ε̌, ε̂) the solution
exists and is a uniform on ε.

3 Multipoint problem with NLIVC having different signs factors

We suppose that NLIVP (1), (2) has different signs for the factors αk (k =
1, · · · , n) and reformulate the problem for convenience without losing in gener-
ality.

Consider the following NLIVP

Lu ≡ εu′(x) + a(x)u(x) = f(x), x > 0, (13)

`u ≡ u(0)−
n∑
k=1

αku(ζk) +
m∑
l=1

βlu(ηl) = φ (14)

for smooth functions f(x) and a(x), a(x) ≥ a > 0 for x ≥ 0, ε > 0, αk >
0, k = 1, · · · , n and βl > 0, l = 1, · · · ,m, 0 < ζ1 < ζ2 < · · · < ζn < X ,
0 < η1 < η2 < · · · < ηm < X , X ∈ R, φ ∈ R. In view of (14), we denote the
function

`ω(ε) = 1−
n∑
k=1

αk exp(−ε−1
ζk∫
0
a(t)dt) +

m∑
l=1

βl exp(−ε−1
ηl∫
0
a(t)dt).

Following is the reformulation of Lemma 2.3.

Lemma 3.1. If
n∑
k=1

αk −
m∑
l=1

βl > 1, then NLIVP (13), (14) has some critical

parameter ε∗ > 0.

Proof. Since limε→0 `ω(ε) = 1 but limε→∞ `ω(ε) = 1−
n∑
k=1

αk+
m∑
l=1

βl, then

the continuous on (0,∞) function `ω(ε) achieves zero at some ε∗ ∈ (0,∞) if
n∑
k=1

αk −
m∑
l=1

βl > 1. Lemma 3.1 is proved.

Lemma 3.2. The classical solution of NLIVP (13), (14) exists for each of the
following cases under corresponding requirements:4

4 Throughout the paper, the symbol α denotes the sum
n∑

k=1
αk and the symbol β denotes

m∑
l=1
βl by default.
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(i) α ≤ 1, ∀ε > 0;
(ii) −∞ < α− β ≤ 1, ηm < ζ1 ∀ε > 0;
(j) 1 < α− β, ηm < ζ1, ε ∈ (0, ε̌] ∪ [ε̂,∞),

ε̌ = θ(ζ1 − ηm)a/ ln(α/(1 + β)) ∀ 0 < θ < 1,
ε̂ = ΘζnA/ ln(α/(1 + β)) ∀ Θ > 1;

(jj) 1 < α− β, ζn < η1, ε ∈ (0, ε̌] ∪ [ε̂,∞),
ε̌ = θζ1a/ lnα ∀ 0 < θ < 1,
ε̂ = ΘηmA/ ln(α− β) ∀ Θ > 1;

(jjj) 1 < α, ε ∈ (0, ε̌], ε̌ = θζ1a/ lnα ∀ 0 < θ < 1.

Proof. In view of Lemma 2.2 we shall check whether or not `ω(ε) 6= 0 to
determine the existence of a solution of NLIVP (13),(14), where

`ω(ε) = 1−
n∑
k=1

αkω(ζk) +
m∑
l=1

βlω(ηl), ω(x) = exp(−ε−1
x∫
0
a(t)dt).

(i). Taking into account the behavior of ω(x) we have the following inequali-
ties ∀ ε > 0

`ω(ε) >

{
1− α > 1 > 0 for 0 < α < 1,
1− ω(ζ1) > 0 for α = 1

regardless of the location of the points ζk, k = 1, · · · , n and ηl, l = 1, · · · ,m.
It means that the solution exists for ∀ ε > 0 when α ≤ 1.

(ii). If ηm < ζ1, then ∀ ε > 0 we have

`ω(ε) >


1− (α− β) > 1 > 0 for −∞ < α− β ≤ 0,
1− (α− β) > 0 for 0 < α− β < 1,
1− ω(ηm) > 0 for α− β = 1.

Therefore, the solution exists for case (ii).
(j). Since α − β > 1, some critical parameter exists in view of the Lemma

3.1. By virtue of the MV property

`ω(ε) = 1− αω(ζε) + βω(ηε) = (1 + β)ω(ξε)− αω(ζε)

for each ε > 0 and an appropriate ξε ∈ [0, ηε], ηε ∈ [η1, ηm], ζε ∈ [ζ1, ζn].
Since ηm < ζ1, from the equation `ω(ε) = 0 we get a formal expression for the

critical parameter ε∗ = [lnα − ln(1 + β)]−1
ζε∗∫
ξε∗

a(x)dx. Then ε∗ ∈ (ε̌, ε̂) for

ε̌ = θ(ζ1 − ηm)a/ ln(α/(1 + β)) ∀ 0 < θ < 1 and ε̂ = ΘζnA/ ln(α/(1 + β))
∀ Θ > 1 with A = max{a(x) ∀x ∈ [0, X]}. Therefore, the solution always
exists outside of (ε̌, ε̂) , i.e., the theorem statement for case (j) is proved.
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(jj). Since α− β > 1, some critical parameter exists by virtue of the Lemma
3.1. For an arbitrary ε > 0 `ω(ε) > 1 − αω(ζε) for ζε ∈ [ζ1, ζn]. If for
some ε the inequality 1 − αω(ζε) > 0 holds, then the inequality `ω(ε) > 0
also holds. Similarly, if for some ε 1 − αω(ζ1) > 0, then 1 − αω(ζε) > 0
since 1 − αω(ζε) > 1 − αω(ζ1). Actually, 1 − αω(ζ1) > 0 for all ε ∈ (0, ε̌]
if ε̌ = θζ1a/ lnα ∀ 0 < θ < 1 and α > 1 + β. Therefore, `ω(ε) > 0 for
ε ∈ (0, ε̌], it means that the solution exists for ε ∈ (0, ε̌].

On the other hand, `ω(ε) < 1 − (α − β)ω(ηε) < 1 − (α − β)ω(ηm) for
1 < α − β. If 1 − (α − β)ω(ηm) < 0, then `ω(ε) < 0 too. Since 1

−(α − β)ω(ηm) < 0 for ε >
ηm∫
0
a(x)/ ln(α − β)dx, then `ω(ε) < 0 for all

ε ∈ [ε̂,∞) if ε̂ = ΘηmA/ ln(α− β) ∀ Θ > 1. It means that the solution exists
for ε ∈ [ε̂,∞).

In summary, the solution exists for all ε laying outside of the interval (ε̌, ε̂).
The theorem statement for case (jj) is proved.

(jjj) Here is `ω(ε) > 1 − αω(ζ1). Since 1 − αω(ζ1) > 0 for ε ∈ (0, ε̌]

where ε̌ = θζ1a/ ln
n∑
k=1

αk ∀ 0 < θ < 1, then `ω(ε) > 0 for all ε ∈ (0, ε̌].

Therefore, the solution exists for case (jjj). Lemma 3.2 is proved.

Theorem 3.3. For each case of Lemma 3.2, but with additional restriction in
the case
(ii): 0 < ε ≤ Υ, ∀ Υ > 0 when α− β = 1,
for the classical solution of NLIVP (13), (14) a uniform on ε and independent
on x a priori estimation (3) holds.

Proof. Put u(x) = v(x) + w(x), so that v(x) is the classical solution of the
Cauchy problem

Lv(x) = f(x), x > 0, v(0) = 0

and w(x) is a smooth solution of NLIVP

Lw(x) = 0 , x > 0, `w = φ− `v.

Since for the classical solution of the Cauchy problem a uniform on ε a priori
estimation (6) holds, then

|`v| ≤ α+ β

a
max

0≤t≤X
|f(t)| . (15)
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On the other hand, for w(x) we have

w(x) = w(0) exp(−1
ε

x∫
0

a(t)dt), w(0) = (`ω)−1(φ− `v), (16)

where ω(x) = w(x)/w(0) for all x ≥ 0.
(i). Regardless the location of the points ζk, k = 1, · · · , n and ηl, l =

1, · · · ,m, ∀ ε > 0 the following inequalities hold:

|w(0)| ≤ (`ω)−1(|φ|+ |`v|) ≤ (1− α)−1(|φ|+ |`v|) if 0 < α < 1.

Hence taking into account (15) we have

|w(0)| ≤ C1(|φ|+ max
0≤t≤X

|f(t)|), 0 ≤ x ≤ X. (17)

Therefore, for w(x) as for the classical solution of an appropriate Cauchy prob-
lem

Lw(x) = 0, x > 0, w(0) = γ,

a uniform on ε and independent on x a priori estimate holds

|w(x)| ≤ C2(|φ|+ max
0≤t≤X

|f(t)|), 0 ≤ x ≤ X. (18)

Then a priori estimate (3) successively follows from (6) and (17) for the sub-
case when 0 < α < 1.

If α = 1, then positive and continuous on (0,∞) function `ω(ε) attains
the minimum at some value of ε ∈ (0,∞) because limε→0 `ω(ε) = 1 and
limε→∞ `ω(ε) = β. Therefore,

|w(0)| ≤ [min `ω(ε)]−1(|φ|+ |`v|), (19)

then (16) and (17) actually follow. A priori estimate (3) is proved for (i).
(ii). For ηm < ζ1 and ∀ε > 0 we have the sequence of inequalities

|w(0)| ≤ (`w)−1(|φ|+ |`v|) ≤ [1− (α− β)ω(ηm)]−1(|φ|+ |`v|)

≤

{
(|φ|+ |`v|), if −∞ < α− β ≤ 0,
(1− α+ β)−1(|φ|+ |`v|), if 0 < α− β < 1.



96 D.M. Dovletov

Hence, by taking into account (6) and (15), we get a priori estimation (3) if
−∞ < α− β < 1.

If α − β = 1, then since the critical parameter does not exist (Lemma 3.2)
the continuous function `ω(ε) is positive on (0,∞). Then the function `ω(ε)
attains the minimum at some value ε ∈ (0, Υ ] for arbitrary Υ > 0 because
limε→0 `ω(ε) = 1 and limε→∞ `ω(ε) = 0. It means that we sequentially obtain
(18), (16) and (17). Therefore, a priori estimate (3) is proved for (ii).

(j)-(jjj). Because limε→0 `ω(ε) = 1 but limε→∞ `ω(ε) = 1 − α + β, then
the continuous on (0,∞) function `ω(ε) attains zero at some critical parameter
ε∗ ∈ (ε̌, ε̂) (Lemma 3.2) for cases (j) and (jj). In view of isolating intervals we
have the corresponding sequence of inequalities

|w(0)| ≤ |`ω(ε)|−1(|φ|+ |`v|)

≤

{
min0<ε≤ε̌[`ω(ε)]

−1(|φ|+ |`v|) for ε ∈ (0, ε̌],
[minε̂≤ε<∞ |`ω(ε)|]−1(|φ|+ |`v|) for ε ∈ [ε̂,∞)

for each of the cases (j) and (jj). Applying these inequalities we successively
obtain (18), (16) and (17).

Eventually, if some critical parameter exists for the case (jjj), then ε∗ ∈
(ε̌,∞) (see Lemma 3.2). Therefore,

|w(0)| ≤ |`ω(ε)|−1(|φ|+ |`v|) ≤ min
0<ε≤ε̌

[`ω(ε)]−1(|φ|+ |`v|)

for ε ∈ (0, ε̌]. Since outside of the isolating interval (ε̌,∞) the function `ω(ε)
is bounded from below, then from the above inequalities we receive (18), (16),
(17) for the case (jjj) too.

In summary, it means that a priori estimate (3) is established for all cases of
the original theorem. Theorem 3.3 is proved.

Example 3.4. Essentiality of the restriction on ε if α − β = 1 for (ii). The
function u(x) = [1−α exp(−ζ/ε) + β exp(−η/ε)]−1 exp(−x/ε) represents the
solution of the problem

εu′(x) + u(x) = 0 , x > 0 , u(0)− αu(ζ) + βu(η) = 1

for ∀ ε > 0 if −∞ < α− β ≤ 1 for α > 0 and β > 0. Actually,

lim
ε→∞

u(x) =

{
(1− α+ β)−1 if −∞ < α− β < 1,
+∞ if α− β = 1.
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We observe, that the additional restriction on ε for the case (ii) when α−β = 1
is essential. Put β = 0, then the example shows the essentiality of the additional
bound on ε for the case (i) of Theorem 2.5 when α = 1.

Example 3.5. Essentiality of the nonlocal points location for (ii). First, put
ζ < η, but nevertheless let α− β < 1 for the problem

εu′(x) + u(x) = 0 , x > 0 , u(0)− αu(ζ) + βu(η) = 1

with α > 0, β > 0. For example, let ε = 1, α = e, ζ = 1/2 and β = 1000.
Choose η = ln(β/(α exp(−ζ) − 1)) = 7.340504..., then ε∗ = 1 is the critical
parameter. We observe that nevertheless α−β < 1, the critical parameter exists
if the layout of ζ and η contradicts with Theorem 3.3 requirements.

Second, put ζ < η but yet α − β = 1 for above problem. Put ε = 1,
α = e, ζ = 1/2, β = e − 1. Then ε∗ = 1 is the critical parameter if η =
ln(β/α exp(−ζ)−1) = 0.97407... . It is clear that in Theorem 3.3 the restriction
on the layout of ζ and η is essential for the case if α− β = 1 too.

Example 3.6. Isolating interval. For α > 0, β > 0, η < ζ, but α − β > 1
the problem

εu′(x) + u(x) = 1 , x > 0 , u(0)− αu(ζ) + βu(η) = 0

has the solution

u(x) = (α− β − 1)[1− α exp(−ζ/ε) + β exp(−η/ε)]−1 exp(−x/ε) + 1

if `ω(ε) = 1−α exp(−ζ/ε)+β exp(−η/ε) 6= 0. However, yet it is possible that
`ω(ε) = 0. Then the equality (1 + β)ω(ξε) = αω(ζ) holds for ξε ∈ (0, η).
Hence the formula ε∗ = (ζ − ξε∗)/(lnα− ln(1 + β)) formally determines some
critical parameter because `ω(ε∗) = 0. With regard to the statement (j) of
Lemma 3.2, we get

ε∗ ∈ [(ζ − η)/(lnα− ln(1 + β)), ζ/(lnα− ln(1 + β))] if α− β > 1.

To avoid the collapsing of the solution we choose ε̌ = θ(ζ−η)/[lnα− ln(1+β)]
and ε̂ = Θζ/[lnα − ln(1 + β)] for 0 < θ < 1, Θ > 1, so that the solution
always exists outside of the isolating interval (ε̌, ε̂).

Corollary 3.7. If m = n, η1 ≤ ζ1 < η2 ≤ ζ2 < · · · < ηn ≤ ζn and
n∑
k=1

(αk − βk + |αk − βk|)/2 ≤ 1, then the classical solution of NLIVP (13), (14)

exists for all ε > 0 and a uniform on ε a priori estimation (3) holds for the
cases:
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(i) ∀ ε > 0 if
n∑
k=1

(αk − βk + |αk − βk|)/2 < 1,

(j) ∀ ε > 0 if
n∑
k=1

(αk − βk + |αk − βk|)/2 = 1 but
n∑
k=1

(αk − βk − |αk
−βk|)/2 6= 0,

(jj) for 0 < ε ≤ Υ, ∀ Υ > 0 if
n∑
k=1

(αk − βk + |αk − βk|)/2 = 1 but

n∑
k=1

(αk − βk − |αk − βk|)/2 = 0.

Proof. The proof is similar to the proof of Lemma 3.2 and Theorem 3.3.
Corollary 3.4 is proved.

Theorem 3.8. If n = m = 1 and α − β > 1, then NLIVP (13),(14) has not
more than only one critical parameter.

Proof. If α − β > 1, then by virtue of Lemma 3.1 some critical parameter
exists.

Suppose that more than one critical parameters exist. Since limε→0 `ω(ε) = 1
and limε→∞ `ω(ε) = 1−α+β, then the continuous on (0,∞) function `ω(ε)
has equal to zero derivative [`ω(ε)]′ = 0 at least for two different values of ε.
Since

[`ω(ε)]′ = ε2[βω(η)
η∫
0
a(t)dt− αω(ζ)

ζ∫
0
a(t)dt] ,

then βω(η)
η∫
0
a(t)dt = αω(ζ)

ζ∫
0
a(t)dt at least for two different values of ε.

Let η < ζ. Then ω(ζ)/ω(η) = Ξ for Ξ = β
η∫
0
a(t)dt/[α

ζ∫
0
a(t)dt] since

η < ζ and α > β. Therefore, exp(−ε−1
ζ∫
η
a(t)dt) = Ξ. Hence we get the

formula ε = −
ζ∫
η
a(t)dt/ ln Ξ for ε satisfying [`ω(ε)]′ = 0. However, this

formula determines only a single value ε which can satisfy [`ω(ε)]′ = 0. We
thereby reach a contradiction.

Put ζ < η. Then formally ω(η)/ω(ζ) = Ξ for Ξ = α
ζ∫
0
a(t)dt/[β

η∫
0
a(t)dt].

If Ξ ≥ 1, then ε cannot satisfy [`ω(ε)]′ = 0 and this state contradicts to the
assumption that [`ω(ε)]′ = 0 at least for two different values of ε. If Ξ < 1,
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then we get the formula ε = −
η∫
ζ

a(t)dt/ ln Ξ for ε satisfying [`ω(ε)]′ = 0.

Since this formula determines only a single value ε which satisfies [`ω(ε)]′ = 0,
then thereby we reach a contradiction once again. Theorem 3.5 is proved.

4 Integral kind of NLIVP

Consider NLIVP with the integral condition

Lu(x) ≡ εu′(x) + a(x)u(x) = f(x), x > 0, `u ≡ u(0)−
ζ2∫
ζ1

α(x)u(x)dx = φ

for 0 < ζ1 < ζ2 < X and α(x) ∈ L2(ζ1, ζ2). If α(x) does not change sign
almost everywhere on [ζ1, ζ2], then Lemma 2.4 and Theorem 2.5 are aplicable
to the research this kind of NLIVP.

Indeed, by virtue of the mean value theorem the nonlocal integral condition

is reducible to the two-point NLIVC: u(0) − αu(ζ) = φ for α =
ζ2∫
ζ1

α(x)dx

and for an appropriate ζ ∈ [ζ1, ζ2]. Further, we consider the solution of
NLIVP with integral kind of NLIVC as the solution of the corresponding two-
point NLIVP. By virtue of Theorem 2.5 we use the theorem statement (i) if

−∞ <
ζ2∫
ζ1

α(x)dx ≤ 1 or the alternative statement (ii) if 1 <
ζ2∫
ζ1

α(x)dx. A

possible critical parameter is not exact if 1 <
ζ2∫
ζ1

α(x)dx, however an appropriate

isolating interval is easily determinable.
Consider NLIVP with a complicated integral condition:

Lu(x) = f(x), x > 0, `u ≡ u(0)−
ζ2∫
ζ1

α(x)u(x)dx+

η2∫
η1

β(x)u(x)dx = φ ,

0 < ζ1 < ζ2 < X , 0 < η1 < η2 < X , α(x) ∈ L2(ζ1, ζ2), β(x) ∈ L2(η1, η2),
ζ2∫
ζ1

α(x)dx > 0,
η2∫
η1

β(x)dx > 0 for α(x) ≥ 0 almost everywhere on [ζ1, ζ2]

and β(x) ≥ 0 almost everywhere on [η1, η2]. By virtue of the mean value
theorem this nonlocal integral condition is reducible to the three-point NLIVC:

u(0)−αu(ζ)+βu(η) = φ for α =
ζ2∫
ζ1

α(x)dx, ζ ∈ [ζ1, ζ2] and β =
η2∫
η1

β(x)dx,
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η ∈ [η1, η2]. In view of Lemma 3.2 and Theorem 3.3 we assign the following
cases:

(i) 0 <
ζ2∫
ζ1

α(x)dx ≤ 1;

(ii) −∞ <
ζ2∫
ζ1

α(x)dx−
η2∫
η1

β(x)dx ≤ 1, η2 < ζ1.

Further we apply statements (i) and (ii) of Lemma 3.2 and Theorem 3.3 ap-
propriately. Additionally, we can assign other cases corresponding to the cases
(j) − (jjj) of Lemma 3.2 and Theorem 3.3 and apply appropriate statements
to research such problems with integral kind of NLIVC.

5 Asymptotic expansion of a solution of NLIVP

Here we prove that for a smooth solution of NLIVP an asymptotic expansion in
terms of a small parameter ε holds.

Theorem 5.1. Let a(x) and f(x) be sufficiently smooth functions. Let u(x)
be a smooth solution of NLIVP which is considered in view of Theorem 2.5,
Corollary 2.6, Theorem 3.3 or Corollary 3.7. Then for a sufficiently small
parameter ε > 0 the solution u(x) has an asymptotic expansion

u(x) =
M∑
k=0

εk(uk(x) + vk(τ)) +Rε,M , τ = x/ε

with |Rε,M | ≤ CεM+1 and an independent on ε constant C, so that

a(x)u0(x) = f(x) ∀ x ≥ 0; a(x)ui(x) = −u′i−1(x), i = 1,M ∀ x ≥ 0;

d
dτ v0(τ) + a(0)v0(τ) = 0, τ > 0, `v0 = φ− `u0;

d
dτ vi(τ) + a(0)vi(τ) = si(τ), τ > 0, `vi = −`ui,

si(τ) =
i−1∑
k=0

τ i−k

(i−k)!a
(i−k)(0)vk(τ), τ > 0, i = 1,M.

Proof. Similar to [9, p. 15] we have to write an appropriate differential problem
for the remainder Rε,M by using the desired expansion but with the difference
that instead of initial data for vi(0), i = 0, 1, · · · ,M we have nonlocal condi-
tions correspondingly. Actually, the remainder Rε,M represents the solution of
NLIVP

LRε,M (x) = εM+1g(x), x > 0, `Rε,M = 0. (20)
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The function g(x) is definable by virtue of the conditions of the theorem as a
linear combination of continuous functions and functions

vi(τ) = P2i(τ) exp(−a(0)τ).

These P2i are an appropriate polynomials of degree 2i. The solution of (19) is
represented by the sum Rε,M (x) = v(x)+w(x) for v(x) satisfying the Cauchy
problem

Lv(x) ≡ εv′(x) + a(x)v(x) = εM+1g(x), x > 0, v(0) = 0

and w(x) satisfying the NLIVP

Lw(x) ≡ εw′(x) + a(x)w(x) = 0, x > 0, `w = −`v

correspondingly. In view of [9, p. 13]

|v(x)| ≤ 1
a

max
0≤t≤X

|Lv(t)|, 0 ≤ x ≤ X.

Therefore, the estimate

|w(x)| ≤ c̃ max
0≤t≤X

|Lv(t)|, 0 ≤ x ≤ X

holds with the corresponding constant c̃ independent on ε and x (see Theo-
rem 2.5, Corollary 2.6, Theorem 3.3, Corollary 3.7). Taking into account the
boundedness of g(x) we finally get the desired estimate |Rε,M (x)| ≤ CεM+1,
0 ≤ x ≤ X with the constant C independent on ε and x. Theorem 5.1 is
proved.

Note that the proof of Theorem 5.1 is extendable to NLIVP with integral kind
of NLIVC considered in Section 4, so that for such NLIVP an appropriate
asymptotic expansion of smooth solution holds.

Note that a possible initial layer overall appearing for smooth solution of NLIVP
depends on φ of course as well as for the classical solution of a Cauchy problem.
But for NLIVP the initial layer also depends on nonlocal factors as well as on the
layout of nonlocal points. For example, we observe that the initial layer of the so-
lution disappears for the problem εu′(x)+u(x) = x, x > 0, u(0)−αu(ζ) = φ
with ε > 0 and α = −φ/ζ for ε→ 0 and `ω(ε) = 1− α exp(−ζ/ε) 6= 0.
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6 Conclusion

Finally, we emphasize, that the investigation of this paper is necessary for fur-
ther research and construction of a uniform on small parameter finite-difference
schemes for multipoint NLIVP. The author would like to express his gratitude
to Prof. A. Ashyralyev for discussing author’s investigation at the Institute of
Mechanics and Mathematics of the Academy of Sciences of Turkmenistan which
stimulated author’s research.
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