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Abstract. This tribute is devoted to Pavel Evseevich Sobolevskii’s lovely memory and
gives a summary of his important contributions to mathematics.

1 Pavel Evseevich Sobolevskii

On August 16, 2018, we were deeply shocked and saddened to hear the loss of
our Honorary Editor Pavel Evseevich Sobolevskii. Professor Pavel Evseevich
Sobolevskii passed away at age 88 in Fortaleza, Brazil surrounded by his family.
He was a well known expert on partial differential equations (PDEs), functional
analysis and numerical analysis. He will be truly missed by our Editorial Board,
his friends and family. It is a fact that we lost him, but we did not lose him as a
model in our life, his devotion and strength. This tribute is devoted to his lovely
memory and gives a summary of his important contributions to mathematics.

Professor Sobolevskii was born on March 26, 1930 in Kiev, Ukraine. After
receiving his undergraduate degree from Kiev State University, he entered gradu-
ate school in Voronezh, Russia, where a major school in functional analysis was
being created at the time. Two giants of this school, M. A. Krasnosel’skii and
S. G. Krein were advisors on his Ph.D. dissertation, defended in 1958. As a part
of his thesis, Sobolevskii introduced and used masterfully the notion of an "acute
angle" between operators, which enables one to compare complex operators with
simpler ones. This technique has been used later by many mathematicians, e.g., J.
L. Lions, H. Brezis, and L. Nirenberg. The intertwining themes of functional anal-
ysis and PDEs had been underlying Pavel’s research throughout his distinguish
mathematical career.

Starting in 1958, Sobolevskii worked at the Department of Mathematics of the
Voronezh Agriculture Institute, chairing the department from 1964 to 1968. In
1962, he received the prestigious and hard to get Doctor of Science degree (an
upscale version of European Habilitation). In 1968, when M. A. Krasnosel’skii
moved to Moscow, P. E. Sobolevskii became the Head of the Department of Func-
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tional Analysis and Operator Equations at Voronezh State University. Among
many other (besides the "acute angle") scientific achievements of P. E. Sobolevskii,
one can mention his joint work with V. Maz’ya for the proof of the classical
and important criterion of existence of a contracting operator semigroup in a Ba-
nach space with differentiable norm (this result is usually attributed to Lumer and
Phillips, although Sobolevskii and Maz’ya obtained it simultaneously and inde-
pendently); development in the context of analytic semigroups of the so called
Kato-Sobolevskii-Tanabe theory of non-autonomous parabolic equations; impor-
tant results on parabolic equations, which in particular implied one of the first local
existence theorems for the Navier-Stokes equation; development of the theory of
fractional powers of positive operators; new methods of numerical solutions of
PDEs, and a lot more.

Sobolevskii was a prolific and well cited author, publishing around 180 research
articles and four monographs on PDEs, functional analysis, and numerical meth-
ods. Besides leading a very active research, he was also an accomplished teacher
and advisor. He has an advisor on 35 Ph.D. dissertations. Math Genealogy Project
lists 67 of his "research descendants". In 1991, P. E. Sobolevskii moved to Israel,
where he worked at the Hebrew University till his retirement in 2003. After that
he moved to Brazil to join his daughter’s family. From 2003 till 2006 he held a
visiting position at the Universidade Federal do Ceara.

The memory of Pavel Evseevich Sobolevskii, a scientist, a scholar, and a re-
markable person, will live in his works and in the hearts of his family, students,
and colleagues.

2 Sobolevskii’s important selected results

Pavel E. Sobolevskii is best known for his following contributions:

2.1 On equations with operators forming an acute angle

One of the commonly used techniques for studying complex equations is that these
equations are compared with simpler ones, whose properties are known. More-
over, for the compared two equations several common properties follow (solvabil-
ity of equations, the possibility of using approximate methods, etc).

For the first time in paper [1] Sobolevskii proposed a simple principle of com-
parison of two operators, which allows one to get several new approaches on el-
liptic and parabolic equations.

1. Definition. The linear operators A and B acting in the Hilbert space H form
an acute angle if they have a common domain D = D(A) = D(B), vanish only
at zero, and if there is a positive number m such that
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(Ax,Bx) ≥ m ‖Ax‖ · ‖Bx‖ (x ∈ D). (1)

An elementary calculation shows that the solution in the sense of Krasnosel’skii
and Krein between the linear sets R(A) and R(B), the values of the operators A
and B forming an acute angle do not exceed 1 − m. This yields the following
result.

Theorem 2.1. Let the operators A and B form an acute angle. Then they have
the same defect indices, more precisely, the orthogonal complements of R(A) and
R(B) have the same dimension.

2. Let {Rn} be a monotonically increasing sequence of subspaces of space H

and
∞⋃
n=1

Rn = H. Denote by Pn the orthogonal projection operator on Rn. For an

approximate solution of the equation Bx = f , the solution xn of "approximate"
equations PnBx = Pnf can be sought.

Theorem 2.2. Let the operators A and B form an acute angle and R(A) =
R(B) = H . Let the subspaces Rn be invariant under the self-adjoint operator
A. Then for each n the equation PnBx = Pnf has a solution xn ∈ Rn. Ap-
proximate solutions xn as n→∞ converge in norm to the solution x of equation
Bx = f , and the norms of residuals Bxn − f tend to zero.

Consider the initial value problem

dx

dt
+Bx(t) = 0, t > 0, x(0) = x0 (x0 ∈ D(B)). (2)

Consider also the approximate solution xn(t) of problem (2), more precisely, the
solution of the initial value problem:

dx

dt
+ PnBx(t) = 0, t > 0, xn(0) = Pnx0. (3)

Theorem 2.3. Let the conditions of Theorem 2.2 be satisfied and let for each x ∈
D(B) the following inequalities hold:

(Ax, x) ≥ (x, x), (Bx, x) ≥ (x, x). (4)

Then problems (2) and (3) are solvable, moreover, for each T > 0

lim
n→∞

max
t∈[0,T ]

‖xn(t)− x(t)‖ = 0, (5)
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lim
n→∞

max
t∈[0,T ]

∥∥∥∥dxn(t)dt
+Bxn(t)

∥∥∥∥ = 0, (6)

where x(t) is the solution of problem (2).

3. Definition. Let A be a linear with dense domain in a Hilbert space H and
with range R(A) in a a Hilbert space H1. Then A is normally solvable if R(A) =
R(A).

LetA∗ be the adjoint ofA. For it to be normally solvable it is necessary and suf-
ficient thatR(A) =⊥ N(A∗), that is, the range ofA is the orthogonal complement
to the null space of A∗.

Let the operators A and B be normally solvable and form an acute angle. It is
easy to see that perturbed operatorsA+F1 andB+F2 also form an acute angle, if
the operators F1 and F2 are bounded and have sufficiently small norms. In some
cases, it is possible to show that the acuteness of the angle is also preserved under
unbounded perturbations.

Theorem 2.4. Let A and B be positive definite self-adjoint operators with a com-
mon domain D. Let constants α1, α2 and m characterize the comparability of
these operators and the angle between them:

α1 ‖Ax‖ ≤ ‖Bx‖ ≤ α2 ‖Ax‖ , (Ax,Bx) ≥ m ‖Ax‖ · ‖Bx‖ (x ∈ D) .

Finally, let the operator F defined on D satisfy the inequality

‖Fx‖2 ≤ δ2 ‖Ax‖2 + c2 ∥∥A1−εx
∥∥2

(x ∈ D) (7)

for some c > 0, ε > 0 and 0 < δ < α1m. Then for sufficiently large k the operator
B + F + kI is normally solvable and forms an acute angle with the operator A.

In particular, the statement of Theorem 2.4 is true for the operator B+F + kI ,
if 0 < δ < 1. Therefore, if the operator A has a completely continuous inverse,
then A+ F is a Fredholm operator.

4. We denote by H1 Hilbert space of Bochner integrable functions on [0, T ]
with values in H1. The scalar product in H1 is defined by

[x, y]H1
=

T∫
0

(x(t), y(t)) dt.

Let A be a positive definite self-adjoint operator with the domain D. The opera-
tor d/dt+ A is directly determined on such continuously differentiable functions
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x(t) ∈ H1, that the functions Ax(t) are continuous and x(0) = 0. The closure
of this operator in H1 is also denoted by d/dt+ A (we can show that this closure
exists). The domain of the constructed closure is denoted by the operator S.

It is well-known that the equation

dx

dt
+Ax = f(t) (8)

considered in H1 has a solution x(t) ∈ S, if f(t) ∈ H1.

Theorem 2.5. Let the operatorsA(t), B(t) and F (t) for each t ∈ [0, T ] be defined
on D and satisfy the conditions of Theorem 2.4 with constants α1 > 0, α2 > 0,
m > 0, c > 0, ε > 0 and 0 < δ < 2

√
α1m+ 1−2, independent of t. Suppose that

for each x ∈ D the functionsA(t)x,B(t)x are continuous, piecewise continuously
differentiable, and the function F (t)x is continuous in t. Then, for sufficiently large
k, the operator d/dt + B(t) + F (t) + kI acting on H1 defined on S is normally
solvable and forms an acute angle with the operator d/dt+A(t).

In particular, the statement of Theorem 2.5 is true for the operator

d/dt+A(t) + F (t) + kI,

if 0 < δ < 4
5 .

5.. We turn to the consideration of specific differential operators.

We denote by Ω a closed bounded region of n dimensional space. Let
◦
W 2

2 , as
usual, denote the closure of W 2

2 in the norm

‖u‖2
W 2

2
=

∫
Ω

[
u2 +

∑n

i=1

(
∂u

∂xi

)2

+
∑n

i,k=1

(
∂2u

∂xi∂xk

)2
]
dx (9)

be sets of thrice continuously differentiable functions in Ω that vanish on the
boundary. In L2(Ω) we consider differential operators

A ≡ −
∑n

i,k=1
aik(x)

∂2

∂xi∂xk
+
∑n

i=1
ai(x)

∂

∂xi
+ a(x)I, (10)

B ≡ −
∑n

i,k=1
bik(x)

∂2

∂xi∂xk
+
∑n

i=1
bi(x)

∂

∂xi
+ b(x)I (11)

with domain
◦
W 2

2 . We assume that on Ω the functions aik and bik are continuously
differentiable, the functions ai, bi, a and b are continuous and forms∑n

i,k=1
aik(x)ξiξk and

∑n

i,k=1
bik(x)ξiξk

are positive definite for each x ∈ Ω.
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Theorem 2.6. There exist positive numbers m > 0, n > 0, such that for all func-

tions u(x) ∈
◦
W 2

2 the following inequality holds∫
Ω

Au ·Bu dx ≥ m

∫
Ω

∑n

i,k=1

(
∂2u

∂xi∂xk

)2

dx

−n
∫

Ω

[∑n

i=1

(
∂u

∂xi

)2

+ u2

]
dx. (12)

If the function a(x) is bounded below by a sufficiently large number depending
only on functions aik and ai, then for setting B = A in (12) we obtain the well-
known inequality of Ladyzhenskaya

‖Au‖2
L2
≥ c2 ‖u‖2

W 2
2
(u ∈

◦
W 2

2 ).

Moreover, under the same condition, the operator A forms an acute angle with the
operator B + kI, where k is a sufficiently large number.

6. Let H = L2(Ω) and let ∆ be the Laplace operator defined on
◦
W 2

2 . For self-
adjoint positive definite operator −∆ we construct the operator d/dt−∆ acting on
H1. Its domain is denoted by S. The next theorem follows from Theorem 2.5:

Theorem 2.7. Assume that the operator

A(t) ≡ −
∑n

i,k=1
aik(t, x)

∂2

∂xi∂xk
+
∑n

i=1
ai(t, x)

∂

∂xi
+ a(t, x)I

for each t ∈ [0, T ] satisfies the conditions of item 5 above. Let the functions
aik(t, x) be continuous, piecewise continuously differentiable, and the functions
ai(t, x) and a(t, x) be continuous in t. Then, for a sufficiently large k the operator
d/dt+A(t)+kI acting onH1 is normally solvable and forms an acute angle with
the operator d/dt− ∆.

7. Applying Theorem 2.1 to the operators considered in items 4-6, we obtain
statements on the solvability of various equations [2]. Let us give examples.

If the operatorsA(t) and F (t) satisfy the conditions of item 4, then the equation

dx

dt
+A(t)x+ F (t)x = f(t) (13)

has a solution x(t) ∈ S, if f(t) ∈ H1. This statement remains valid under restric-
tions on the operator A(t) weaker than piecewise differentiability. It is enough to
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require that the operator A(t)A−1(0) be continuous in operator norm. This state-
ment was proved by approximating the operator A(t) with a special way selecting
continuous, piecewise continuously differentiable operators. In particular, this im-
plies solvability of parabolic equations with a second order elliptic operator with
zero boundary conditions, if the coefficients of this operator continuously depend
on t. The above statements generalize some theorems of Ladyzhenskaya on the
solvability of the boundary-value problem for the elliptic equation Au = f .

8. Application of Theorems 2.2 and 2.3 to the differential equations considered
above to operators (item 5) gives theorems on the convergence of the Bubnov-
Galerkin method for elliptic and parabolic equations. In addition to the conver-
gence of the approximations to the solution, there is convergence of the residuals
to zero. This fact for self-adjoint elliptic equations was previously established by
Mikhlin. We denote by Pn orthogonal projection operator on linear shellRn of the
first n elements of the basis {ej}, consisting of eigenvectors of some self-adjoint
elliptic operator.

Theorem 2.8. Let the operator A satisfy the conditions of item 5. Then, for every
n there is a solution un ∈ Rn of equations PnAun = Pnf. Moreover, as n → ∞
solutions un converge in norm to the solution of the equation Au = f, and the
norms of residuals Aun − f tend to zero.

Theorem 2.9. Let the operator A satisfy the conditions of item 5. Then, for every
n there is a solution un(t) of the initial value problem

du

dt
+ PnAu = 0, un(0) = Pnu0 (u0 ∈

◦
W 2

2 ).

Furthermore, as n → ∞ the solutions un(t) converge in norm, uniformly in t ∈
[0, T ] to the solution of the u(t) of the problem

du

dt
+Au = 0, u(0) = u0,

and the norms of discrepancies dun
dt +Aun tend to zero.

2.2 Coerciveness inequalities for abstract parabolic equations

The role played by coercive inequalities in the study of boundary value problems
for elliptic and parabolic partial differential equations is well known. Coercivity
inequalities for the solutions of an Cauchy problem for abstract differential equa-
tions of parabolic type
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v′ (t) +A (t) v (t) = f(t) (0 ≤ t ≤ T ) , v (0) = v0 (14)

in an arbitrary Banach space E with the linear (unbounded) operators A(t) were
established for the first time by Sobolevskii in the paper [3]. Here v(t) and f(t)
are the unknown and the given functions, respectively, defined on [0, T ] with val-
ues in E. The derivative v′(t) is understood as the limit in the norm of E of the
corresponding ratio of differences. A(t) is a given, closed, linear operator with
domain D(A(t)) = D, independent of t and dense in E. Finally, v0 is a given
element of E.

A function v(t) is called a solution of problem (14) if the following conditions
are satisfied:

i. v(t) is continuously differentiable on the segment [0, T ]. The derivative at the
endpoints of the segment are understood as the appropriate unilateral deriva-
tives.

ii. The element v(t) belongs to D for all t ∈ [0, T ], and the function A(t)v(t)
is continuous on [0, T ].

iii. v(t) satisfies the equation and the initial condition (14).

A solution of problem (14) defined in this manner will from now on be referred
to as a solution of problem (14) in the space C(E) = C([0, T ], E). Here, C(E)
stands for the Banach space of all continuous functions ϕ(t) defined on [0, T ] with
values in E equipped with the norm

||ϕ||C(E) = max
0≤t≤T

||ϕ(t)||E .

From the existence of the such solutions, it follows that f(t) ∈ C(E) and v0 ∈ D.
We say that problem (14) is well-posed in C(E), if the following conditions are

satisfied:

1. Problem (14) is uniquely solvable for any f(t) ∈ C(E) and any v0 ∈ D.
This induces an additive and homogeneous operator via v(t) = v(t; f(t), v0)
which acts from C(E) ×D to C(E) and gives the solution of problem (14)
in C(E).

2. v(t; f(t), v0), regarded as an operator from C(E) × D to C(E), is con-
tinuous. Here, C(E) × D is understood as the normed space of the pairs
(f(t), v0), f(t) ∈ C(E) and v0 ∈ D(A), equipped with the norm

||(f(t), v0)||C(E)×D = ||f ||C(E) + ||v0||D.
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Following the well-known result due to Banach in C(E) [36, p. 100] and these
properties one has the coercive inequality∥∥v′∥∥

C(E)
+ ‖A(.)v‖C(E) ≤MC [‖f‖C(E) + ||v0||D], (15)

where MC (1 ≤MC <∞) does not depend on v0 and f(t).
This inequality is called the coercivity inequality inC(E) for (14). IfA(t) = A,

then the coercivity inequality implies the analyticity of the semigroup exp{−sA}
(s ≥ 0) for all t, i.e., the following estimates

‖exp(−sA)‖E→E , ‖sA exp(−sA)‖E→E ≤M(s > 0)

hold for some M ∈ [1,∞). Thus, the analyticity of the semigroup exp{−sA}
(s ≥ 0) is necessary for the well-posedness of problem (14) in C(E). Unfortu-
nately, the analyticity of the semigroup exp{−sA} (s ≥ 0) is not a sufficient for
the well-posedness of problem (14) in C(E).

Suppose that for each t ε [0, T ] the operator −A(t) generates an analytic semi-
group exp{−sA(t)} (s ≥ 0) with exponentially decreasing norm, when s −→∞,
i.e., the following estimates

‖exp(−sA(t))‖E→E , ‖sA(t) exp(−sA(t))‖E→E ≤Me−δs(s > 0) (16)

hold for some M ∈ [1,∞), δ ∈ (0,∞). From this inequality it follows that the
operator A−1(t) exists and is bounded; hence A(t) is closed in C(E).

Suppose that the operator A(t)A−1(s) is Hölder continuous in t in the uniform
operator topology for each fixed s, that is,

||[A(t)−A(τ)]A−1(s)||E→E ≤M |t− τ |ε, 0 < ε ≤ 1, (17)

whereM and ε are positive constants independent of t, s and τ for 0 ≤ t, s, τ ≤ T.
An operator-valued function v(t, s), defined and strongly continuous jointly in

t, s for 0 ≤ s < t ≤ T, is called a fundamental solution of (14), if

1) the operator v(t, s) is strongly continuous in t and s for 0 ≤ s < t ≤ T,

2) the following identity holds:

v(t, s) = v(t, τ)v(τ, s), v(t, t) = I for 0 ≤ s ≤ τ ≤ t ≤ T,

3) the operator v(t, s) maps the region D into itself. The operator u(t, s) =
At)v(t, s)A−1(s) is bounded and strongly continuous in t and s for
0 ≤ s < t ≤ T,
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4) on the region D the operator v(t, s) is strongly differentiable with respect to
t and s with

ϑv(t, s)

ϑt
= −A(t)v(t, s)

and
ϑv(t, s)

ϑs
= v(t, s)A(s).

v(t, s) is also called evolution operator, Green’s function, etc.

If the function f(t) is not only continuous but also continuously differentiable on
[0, T ], and v0 ∈ D, it is easy to show that the formula

v(t) = v(t, 0)v0 +

t∫
0

v(t, s)f(s)ds (18)

gives a solution of problem (14).
The Cauchy problem (14) has been considered in various spaces F (E) of func-

tions defined on the segment [0, T ] with values in a Banach space E.
A function v(t) is said to be a solution of problem (14) inF (E), if it is a solution

of this problem in C(E) and the function v′(t) and A(t)v(t) belong to F (E).
As in the case of the space C(E), we say that problem (14) is well-posed in

F (E), if the following two conditions are satisfied:

1. For any f ∈ F (E) and v0 ∈ D(A(t)) there exists the unique solution v(t) =
v(t; f(t), v0) in F (E) of problem (14).This means that an additive and homo-
geneous operator v(t; f(t), v0) is defined which acts from F (E)×D(A(t))
to F (E) and gives the solution of (14) in F (E).

2. v(t; f(t), v0), regarded as an operator from F (E) × D(A(t)) to F (E), is
continuous.Here F (E)×D(A(t)) is understood as the normed space of the
pairs (f(t), v0), f(t) ∈ F (E) and v0 ∈ D(A(t)), equipped with the norm

||(f(t), v0)||F (E)×D(A(t)) = ||f ||F (E) + ||v0||D(A(t)).

We set F (E) to be Cα,α0 (E) = Cα,α0 ([0, T ], E), 0 < α < 1, the Banach space
obtained by completion of the set of smooth E-valued functions ϕ(t) on [0, T ] in
the norm

‖ ϕ ‖Cα,α0 (E)= ‖ϕ‖C(E) + sup
0≤t<t+τ≤T

‖ϕ(t+ τ)− ϕ(t)‖E
τα

(t+ τ)α.

As in the case of the space C(E), from the well-posedness of the Cauchy problem
(14) one derives the coercivity inequality∥∥v′∥∥

Cα,α0 (E)
+ ‖A(.)v‖Cα,α0 (E) ≤MC(α)[‖f‖Cα,α0 (E) + ||A(0)v0||E ] , (19)
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where MC (α)(1 ≤MC(α) <∞) does not depend on v0 and f(t).

Theorem 2.10. Suppose v0 ∈ D(A(t)), f(t) ∈ Cα,α0 (E). Suppose that the as-
sumptions (16) and (17) hold and 0 < α ≤ ε < 1. Then, the Cauchy problem
(14) is well-posed in Hölder space Cα,α0 (E). Moreover, for the solution v(t) in
Cα,α0 (E) of the Cauchy problem the coercive inequality

‖v′‖Cα,α0 (E) + ‖A(.)v‖Cα,α0 (E) ≤
M

α(1− α)
‖ f ‖Cα,α0 (E) +M ‖ A(0)v0||E

holds, where M does not depend on α, v0 and f(t) .

Note that it was established that a necessary condition for coercivity is the strong
positivity of the operator coefficients A(t). This condition is also sufficient in the
Hölder spaces Cα,α0 (E) with weight tα.

We now study Cauchy problem (14) in the spaces Lp(E) = Lp([0, T ], E) (1 ≤
p < ∞) of all strongly measurable E−valued functions v(t) on [0, T ] for which
the norm

‖ v ‖Lp(E)= (

T∫
0

‖ v(t) ‖pE dt)
1
p

is finite.
A function v(t) is said to be absolutely continuous, if it has a derivative v′(t)

for almost every t such that v′(t) ∈ L1(E), and if the Newton-Leibniz formula

v(t)− v(τ) =
t∫

τ

v′(s)ds

holds for all t, τ ∈ [0, T ]. Here, the integral is understood in the sense of Bochner.
A function v(t) is said to be a solution of problem (14) in Lp(E), if it is ab-

solutely continuous, the functions v′(t) and A(t)v(t) belong to Lp(E), equation
(14) is satisfied for almost every t, and v(0) = v0. From this definition it follows
that a necessary condition for the solvability of problem (14) in Lp(E) is that f(t)
∈ Lp(E). It will be shown that in certain cases this condition is also sufficient for
the solvability of problem (14). As concerns the boundary elements, in contrast to
the situation considered earlier, from the solvability of problem (14) in Lp(E) it
follows only that v0 ∈ E. In the case of an unbounded operator A(t) this does not
allow us to prove the solvability of problem (14).

From the unique solvability of (14) it follows that the operator v(t; f(t), v0) is
bounded in Lp(E) and one has the coercive inequality∥∥v′∥∥

Lp(E)
+ ‖A(.)v(t)‖Lp(E) ≤MC [‖f‖Lp(E) + ||A(0)v0||E ] ,
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where MC (1 ≤MC <∞) does not depend on v0 and f(t).
In the case of Bochner spaces Lp(E) with p ∈ (1,∞) the following extrapola-

tion result was established for the first time by Sobolevskii in the paper [3].

Theorem 2.11. Suppose that the assumptions (16) and (17) hold and 0 < α ≤
ε < 1 Suppose problem (14) is well-posed in Lp0(E) for some p0, 1 < p0 < ∞.
Then it is well-posed in Lp(E) for any p ∈ (1,∞) and the following coercivity
inequality holds:

||v′‖Lp(E) + ‖A(.)v‖Lp(E) + ‖v′‖C(E1−1/p,p)

≤ M(p0)p
2

p− 1
‖f‖Lp(E) +M ||A(0)v0‖E1−1/p,p ,

where M(p0) and M are independent of p, v0 and f(t).

Note that for the general space E there are no coercivity inequalities in spaces
C(E) and L1(E). Furthermore, unconditional coercivity inequalities for the solu-
tions of abstract differential equations of parabolic type were established in sev-
eral Banach spaces by Sobolevskii in papers [4–6]. Note that for the first time
Sobolevskii in the paper [5] successfully applied the theory of interpolation of lin-
ear positive operators to partial differential equations for obtaining new coercivity
inequalities for the solutions of abstract parabolic equations. The application of
these results to parabolic partial differential equations allowed one to obtain a se-
ries of new coercivity inequalities involving different norms with respect to t and
the space variables. His approach is different from application of classical tech-
niques of PDEs. The main novelty of Sobolevskii’s work is that he has success-
fully investigated the theory of partial differential equations independently from
classical approaches (such as the maximum principle or others). One of the im-
portant aspects of Sobolevskii’s work is that he has at the same time investigated
theory of difference schemes for the approximate solutions of partial differential
equations and theory of these partial differential equations. This approach was suc-
cessful for the theory of partial differential equations and theory of their difference
schemes. Moreover, Sobolevskii was really a perfect teacher and he was happy to
give idea for students and investigate problems jointly with his colleagues and stu-
dents. Therefore, Sobolevskii’s many important results were established jointly
with his students.

2.3 Method of positive operators in investigation of difference schemes for
parabolic equations

The research interests of Sobolevskii in theory of difference schemes are broad
and include stability and well-posedness of difference problems, construction and
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investigation of high order of accuracy difference schemes for partial differen-
tial equations, study of positivity of difference operators, and structure of frac-
tional spaces generated by positive difference operators. The important results
of Sobolevskii in the theory of difference schemes for parabolic equations were
published in papers [7–36].

The central problem in the theory of difference schemes is the study of their sta-
bility. To prove stability of difference schemes, in a number of works, difference
schemes were treated as operator equations in a Hilbert space, and the investiga-
tion was based on the symmetry properties of operator coefficient. This has led to
L2-stability estimates. Of great interest is the study of stability in the C−norm. In
a number of papers the corresponding estimates were obtained for the simplest dif-
ference schemes approximating the Cauchy problem for parabolic equations and
systems with constant coefficients and one space variable. The proof of stability
is based on estimates of parabolic difference Green function (fundamental solu-
tions). In the case of parabolic equations with variable coefficients and more than
one space variable, stability in the C−norm is known to hold only for difference
schemes that satisfy a maximum principle.

An important type of stability is the coercive stability (well-posedness) of dif-
ference schemes. There are no coercive estimates in the C−norm, because they
do not hold for the corresponding differential equations. In a number of papers the
coercive stability of difference schemes in the L2− and Lp− norms were estab-
lished.

Sobolevskii in the paper [30], treated for the first time difference schemes as
operator equations in Banach spaces. In a Banach space, there is no notion of
symmetry and for this reason the study of stability relies on the positivity property
of the operator coefficients, expressed in terms of properties of their resolvents.
Enlisting the theory of positive operators turned out to be effective in the investi-
gation of such difference schemes (see [25–28] ). The coercivity inequality in the
difference analogous of the Bochner spaces Lp(τ, E) holds for any p ∈ (1,∞)
whenever it holds for at least one p0 ∈ (1,∞), i.e., here we have a result analo-
gous to that in the differential case. Sobolevskii in the papers [14–16] success-
fully applied theory of interpolation of linear positive operators to theory of dif-
ference schemes for getting new coercivity inequalities in the spaces Lq(τ, E′α,q)
(0 < α < 1, 1 ≤ q ≤ ∞). The application of these results to difference schemes
for parabolic partial differential equations allowed one to obtain a series of new
stability and coercivity inequalities involving different norms with respect to t
and the space variables. Note that these stability and coercivity inequalities of
Crank-Nicolson difference scheme for parabolic partial differential equations in
Hölder spaces which were established by Sobolevskii are new for one dimensional
parabolic equations even (see [11–13, 15, 31, 33]).
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Moreover, this Sobolevskii’s operator approach was very important in the study
of the solution of the various problems for delay partial differential equations. Ac-
tually, Sobolevskii [37] successfully applied theory of interpolation of linear posi-
tive operators for delay differential equations of parabolic type. Stability estimates
for the solutions of the first and second order of accuracy difference schemes for
the approximate solution of this initial value problem for delay differential equa-
tions of parabolic type were presented. Stability estimates in Hölder norms for
the solutions of the initial value problem of the delay differential and difference
equations of the parabolic type were also obtained.

The application of the approximants Rkj,l(τA) in the construction of difference
schemes in the case of an unbounded strongly positive operator A acting in an
arbitrary Banach space E has been systematically developed by several authors.
Difference schemes were studied for a class of operators that generate not only an-
alytic, but also strongly continuous semigroups. Most of the results of the stability
and coercive stability in the Banach spaces of the single-step difference schemes
of a high order of accuracy generated by Rkj,l(τA) for parabolic equations were
considered in the book [21]. The application of these results to the initial value
problem for parabolic equations allowed one to obtain a series of new coercivity
inequalities in difference analogous of various norms with respect to t and x for
the solutions of difference schemes of the high order of accuracy in time and space
variables.

However, the theory of the high order of accuracy single-step difference schemes
for parabolic differential equations with variable operator coefficients has received
less attention than parabolic differential equations with coefficients independent of
time. On the segment [0, T ], we consider a uniform grid space

[0, T ]τ = {tk = kτ, k = 0, 1, · · · , N,Nτ = T}

with step τ > 0. Here, N is a fixed positive integer. From formula (18) it follows
that

1
τ
(v(tk)− v(tk−1)) +

1
τ
(I − u(tk, tk−1))v(tk−1)

=

∫ tk

tk−1

u(tk, s)f(s)ds, 1 ≤ k ≤ N, v(0) = v0. (20)

The last system is called the single-step exact difference scheme for the solution
of initial value problem (14).

The application of the Padè approximants to the Cauchy problem for parabolic
equations with variable operator coefficients A(t) acting in an arbitrary Banach
space E relies on the approximate formulas for expressions
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v(tk, tk−1) and
1
τ

∫ tk

tk−1

v(tk, s)f(s)ds.

Unfortunately, in general case of operatorsA(t) the explicit formula for v(tk, tk−1)
does not exist. Therefore, in this case we cannot use approaches of the construction
of Padè difference schemes for parabolic equations with coefficients independent
of time.

The single-step difference schemes of a high order of accuracy generated by an
exact difference scheme for parabolic equations with variable operator coefficients
A(t) acting in an arbitrary Banach space E were presented by Sobolevskii for the
first time in [20]. The schemes were based on the series of interesting properties
concerning the semigroup exp{−sA(t)} (s ≥ 0) and the fundamental solution
v(t, s) of problem (14). These properties and a series of interesting estimates
for Rij,l(τA(tk)) and ũ(k,m) permit us to study the stability and the coercive
stability of presented difference schemes. Furthermore, the high order of accuracy
difference schemes generated by the Taylor’s decomposition on the two points
for the approximate solutions of the Cauchy problem for parabolic equations with
variable operator coefficients A(t) acting in an arbitrary Banach space E were
presented. The utilization of the Taylor’s decomposition on the two points in the
construction of the single step difference schemes of the high order of accuracy
for the approximate solutions of problem (14) is based on the following theorem.

Theorem 2.12. Suppose the function v(t)(0 ≤ t ≤ T ) has a (p + q + 1)-th
continuous derivative and tk−1, tk ∈ [0, T ]τ . Then, the following relation holds:

v(tk)− v(tk−1) +

p∑
j=1

αjv
(j)(tk)τ

j −
q∑
j=1

βjv
(j)(tk−1)τ

j

=
(−1)p

(p+ q)!

∫ tk

tk−1

(tk − s)q(s− tk−1)
pv(p+q+1)(s)ds, (21)

where {
αj =

(p+q−j)!p!(−1)j

(p+q)!j!(p−j)! for any j, 1 ≤ j ≤ p,
βj =

(p+q−j)!q!
(p+q)!j!(q−j)! for any j, 1 ≤ j ≤ q.

(22)

From (21) it is clear that for the approximate solution of problem (14) it is
necessary to find v(j)(tk)

for any j, 1 ≤ j ≤ p and v
(j)
(tk−1)

for any j, 1 ≤ j ≤ q.

Using the equation
v′(t) = −A(t)v(t) + f(t),
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we obtain
v(j)(t) = Aj(t)v(t) + Fj(t), (23)

where
A1(t) = −A(t), F1(t) = f(t), Aj(t) = A

(′)
j−1(t)−Aj−1(t)A(t),

Fj(t) = F
(′)
j−1(t) +Aj−1(t)f(t) for any j, 2 ≤ j ≤ p.

Replacing the v(j)(t) in (21) by (23) and neglecting the last term, we obtain the
single-step difference schemes of (p+ q)− order of accuracy for the approximate
solution of the problem (21)

uk − uk−1

τ
+

p∑
j=1

αjAj(tk)τ
j−1uk −

q∑
j=1

βjAj(tk−1)τ
j−1uk−1 = ϕp,qk , (24)

ϕp,qk = −
p∑
j=1

αjFj(tk)τ
j−1 +

q∑
j=1

βjFj(tk−1)τ
j−1, 1 ≤ k ≤ N, u0 = y0.

The well-posedness of these difference schemes in the various Banach spaces
were studied. The stability and coercive stability estimates in Banach norms for
the solutions of the high order of accuracy difference schemes of the mixed type
boundary value problems for parabolic equations were obtained. The study of the
high order of accuracy difference schemes in the case of strongly positive operators
A(t) allowed to establish not only the stability but also the coercive stability in
difference analogous of Banach spaces. The application of these abstract results
to the mixed type boundary value problems for parabolic equations relies on the
following facts: the strong positivity of an elliptic difference operator At,xh in the
Banach space Eh, the well-posedness of the resolvent equation of At,xh in Eh or in
E′α,p(Eh, A

t,x
h ), 1 ≤ p ≤ ∞, the structure of fractional spaces E′α,p(Eh, A

t,x
h ).

The strong positivity in difference analogue of weighted Hölder for an elliptic
difference operator At,xh of second order of accuracy that approximates an elliptic
operator without mixed derivatives was established in [42].The strong positivity of
the simplest multidimensional second-order elliptic difference operator in the Lp,h
and Ch-norms was established in [7–9]. The most thorough study of the strong
positivity in the Ch−and Cβh−norms of a wide class of operators that approximate
elliptic operators of arbitrary order in Rn was carried out in papers [38–41].

Finally, let us comment on the structure of fractional spaces. It is established
that the norms in the spaces E′α,p(Lp(R

n
h), A

t,x
h ) and W 2mα

p (Rnh) are equivalent
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uniformly in h for any 0 < α < 1/2m and 1 ≤ p ≤ ∞. This fact corresponds to
the following equality, known in interpolation theory

E′α,ρ(Lp(R
n), At,xh ) =W 2mα

p (Rn), 0 < α < 1/2m, 1 ≤ p ≤ ∞,

which in turn follows from the equality D(At,x) = W 2mα
p (Rn) for an 2m-th

order elliptic operator At,x in Lp(Rn), 1 ≤ p ≤ ∞, via the real interpolation
method. The alternative method of Sobolevski’s investigation is based on estimates
of fundamental solution of the resolvent equation for the operator At,xh , allows us
to consider also the cases p = 1 and p =∞.

2.4 Partial differential equations of the elliptic type

Sobolevskii in his paper [42] successfully applied the theory of analytic semi-
groups to the boundary value problem for elliptic differential equation

−v′′(t) +Av(t) = f(t) (0 ≤ t ≤ T ), v(0) = v0, v(T ) = vT (25)

in an arbitrary Banach space E with the linear positive operator A.
A function v(t) is called a solution of problem (25) if the following conditions

are satisfied:

i. v(t) is a twice continuously differentiable on the segment [0, T ]. The deriva-
tive at the endpoints of the segment are understood as the appropriate unilat-
eral derivatives.

ii. The element v(t) belongs to D(A) for all t ∈ [0, T ], and the function Av(t)
is continuous on the segment [0, T ].

iii. v(t) satisfies the equation and boundary conditions (25).

A solution of problem (25) defined in this manner will from now on be referred
to as a solution of problem (25) in the space C(E) = C([0, T ], E). If v(t) is a so-
lution in C(E) of problem (25), then the data of the problem satisfy the following
conditions:

a) f(t) belongs to C(E) ;
b) v0 and vT belongs to D(A).
We say that problem (25) is well-posed inC(E), if the following two conditions

are satisfied:
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1. For any f ∈ C(E) and v0, vT ∈ D(A) there exists the unique solution
v(t) = v(t; f(t), v0, vT ) in C(E) of problem (25). This means that an addi-
tive and homogeneous operator v(t; f(t), v0, vT ) is defined which acts from
C(E)×D(A)×D(A) to C(E) and gives the solution of (25) in C(E).

2. v(t; f(t), v0, vT ), regarded as an operator from C(E) × D(A) × D(A) to
C(E), is continuous. Here C(E) × D(A) × D(A) is understood as the
normed space of the triplets (f(t), v0, vT ), f(t) ∈ C(E) and v0, vT ∈ D(A),
equipped with the norm

||(f(t), v0, vT )||C(E)×D(A)×D(A) = ||f ||C(E) + ||v0||D(A) + ||vT ||D(A).

Following the result due to Banach in C(E) [36, p. 198] and these properties
yield the following coercive inequality∥∥v′′∥∥

C(E)
+ ‖Av‖C(E) ≤MC [‖f‖C(E) + ||Av0||E + ||AvT ||E ], (26)

where MC (1 ≤ MC < ∞) does not depend on v0, vT and f(t). Inequality
(26) permits us to investigate the spectral properties of operator A generated
by the well-posedness in C(E) of problem (25). For any u ∈ D(A) and
λ ≥ 0 we will put

ψ = λu+Au.

Then, clearly, the function ei
√
λtu(i =

√
−1) is a solution in C(E) of equa-

tion
−v′′(t) +Av(t) = f(t)

with f(t) = ei
√
λtψ. Let w(t) be a smooth function defined on [0, T ] by the

formula

w(t) =


0, for any t ∈ [0, T8 ] ∪ [7T

8 , T ],

a(t), for any t ∈ [T8 ,
T
4 ] ∪ [3T

4 ,
7T
8 ],

1, for any t ∈ [T4 ,
3T
4 ],

where a(t) is a smooth function and |a( t)| ≤ 1. Then, the function
v(t) = w(t)ei

√
λtu is a solution in C(E) of problem (25) with v(0) =

v(T ) = 0 and

f(t) =


0, for any t ∈ [0, T8 ] ∪ [7T

8 , T ],

−(a(t)ei
√
λt)ttu+ a(t)ei

√
λtAu, for any t ∈ [T8 ,

T
4 ] ∪ [3T

4 ,
7T
8 ],

ei
√
λtψ, for any t ∈ [T4 ,

3T
4 ].

Therefore, from the coercive inequality (26) it follows that

λ ‖u‖E + ‖Au‖E = max
t∈[T4 ,

3T
4 ]
‖v′′(t)‖E + max

t∈[T4 ,
3T
4 ]
‖Av(t)‖E
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≤ max
t∈[T8 ,

7T
8 ]
‖v′′(t)‖E + max

t∈[T8 ,
7T
8 ]
‖Av(t)‖E

=
∥∥v′′∥∥

C(E)
+ ‖Av‖C(E) ≤MC ‖f‖C(E)

=MC max{‖ψ‖E , max
t∈[T8 ,

T
4 ]∪[ 3T

4 ,
7T
8 ]
‖ − (a(t)ei

√
λt)ttu+ a(t)ei

√
λtAu‖E}.

Since

−(a(t)ei
√
λt)ttu+ a(t)ei

√
λtAu

= a(t)ei
√
λtψ − 2a′(t)i

√
λei
√
λtu− a′′(t)ei

√
λtu,

we have that

‖ − (a(t)ei
√
λt)ttu+ a(t)ei

√
λtAu‖E

≤ |a(t)|‖ψ‖E + 2|a′(t)|| d
dt
(ei
√
λt)|||u||E + |a′′(t)|||u‖E

≤ ‖ψ‖E + 2M1
√
λ||u||E +M2||u‖E ,

where

M1 = max
t∈[T8 ,

T
4 ]∪[ 3T

4 ,
7T
8 ]
|a′(t)|,M2 = max

t∈[T8 ,
T
4 ]∪[ 3T

4 ,
7T
8 ]
|a′′(t)|.

Thus,

λ ‖u‖E + ‖Au‖E ≤MC [‖ψ‖E + 2M1
√
λ||u||E +M2||u‖E ].

Using the inequality
0 < 2

√
λ < ελ+ ε−1

for ε > 0, we obtain

[λ(1− εM1MC )− (ε−1M1MC +M2MC)] ‖u‖E + ‖Au‖E ≤MC‖ψ‖E .

Let 0 < ε < (M1MC)
−1,

δ = min
0<ε<(M1MC)−1

(ε−1M1MC +M2MC)(1− εM1MC)
−1

and λ ≥ δ + η for some η > 0. Then, the following inequality

(λ+ 1) ‖u‖E + ‖Au‖E ≤Mp(η)‖ψ‖E

holds for some 0 ≤ Mp(η) < ∞. This means that there exists the inverse
operator (λI+A)−1, which is defined on the rangeR(λI+A) of the operator
λI +A. We will prove that R(λI +A) = E for sufficiently large positive λ.
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Then, from that it follows that there exists the inverse operator (λI +A)−1 and
the following inequality is valid

(λ+ 1)
∥∥(λI +A)−1ψ

∥∥
E
+
∥∥A(λI +A)−1ψ

∥∥
E
≤Mp(η)‖ψ‖E

for all λ, λ ≥ δ + η and ψεE. Now, we will prove that R(λI + A) = E for all
positive λ. We consider boundary value problem (25). Making the substitution t =
ατ for α > 0, we obtain the well-posed boundary value problem in C([0, Tα ], E) :

− 1
α2 ṽ

′′(τ) +Aṽ(τ) = f̃(τ)(0 ≤ τ ≤ T

α
), ṽ(0) = v0, ṽ(

T

α
) = vT .

Let ṽ(τ) be the solution of this problem for v0 = vT = 0 and f̃(τ) = f0, where
f0 is an arbitrary element of E. Since f0 and A do not depend in τ , we have
that ṽ(τ) = ṽ( T2α − τ) for all 0 ≤ τ ≤ T

2α . Then, in particular, it follows that
ṽ′(0) = −ṽ′(Tα ). Finally, choosing

√
λTα = (2m + 1)π for some m = 1, 2, · · ·

and integrating by parts, we obtain

−
∫ T

α

0
ṽ′′(τ)ei

√
λτdτ = [−ṽ′(T

α
)ei
√
λT
α − ṽ′(0)] + i

√
λ[ṽ(

T

α
)ei
√
λT
α − ṽ(0)]

−(i
√
λ)2
∫ T

α

0
ṽ(τ)ei

√
λτdτ = λ

∫ T
α

0
ṽ(τ)ei

√
λτdτ.

Therefore,

−
∫ T

α

0
ṽ′′(τ)ei

√
λτdτ = [−ṽ′(T

α
)ei
√
λT
α − ṽ′(0)] + i

√
λ[ṽ(

T

α
)ei
√
λT
α − ṽ(0)]

λ

α2

∫ T
α

0
ṽ(τ)ei

√
λτdτ +A

∫ T
α

0
ṽ(τ)ei

√
λτdτ =

∫ T
α

0
f0e

i
√
λτdτ = − 2

i
√
λ
f0

for all λ, λ > 0 and f0ε E. This means that R(λI + A) = E for all
√
λTα =

(2m + 1)π and m = 1, 2, · · · . From that it follows that there exists the bounded
inverse (λI + A)−1 for all λ ≥ δ + η. An operator A acting in a Banach space
E and having a dense domain D(A) is called positive if the operator λI + A has
bounded in E inverse for all λ, λ ≥ 0, and the estimate∥∥(λI +A)−1∥∥

E→E ≤Mp(λ+ 1)−1 (27)

is satisfied for some 1 ≤ Mp < ∞. Note that, as seen in above computations, we
are not able to obtain the estimate (27) for all λ, λ ≥ 0.
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Is the positivity of the operator A a sufficient condition for the well-posedness
of (25) in C(E)? As it turns out, problem (25) is not well posed in C(E) for all
such positive operators.

Note that from estimate (27), it follows that the operator λI + A has bounded
inverse for all complex numbers

λ = σ + iτ ∈ G+
ε = G+

ε (Mp) (0 < ε < 1),

such that
|τ | ≤ 1− ε

Mp
(1 + σ), for σ ≥ 0

or
(σ2 + τ 2)1/2 ≤ 1− ε

Mp
, for σ ≤ 0

and the estimate ∥∥(λI +A)−1∥∥
E→E ≤M1ε

−1(1 + |λ|)−1

holds for some M1 ∈ [1,∞) which is independent of ε ∈ (0, 1). It means that the
spectrum σ(A) of A is the subset of set G−ε = −G+

ε and inside of G−ε and on its
boundary ∂G−ε the resolvent (λI −A)−1 is subject to the bound∥∥(λI −A)−1∥∥

E→E ≤M1ε
−1(1 + |λ|)−1. (28)

Let ψ(z) be an analytic function on the neighborhood of σ(A), and suppose that
ψ satisfies the estimate

(1 + |z|)α |ψ(z)| ≤M2

for some 0 < α <∞, 1 ≤M2 <∞. Then the operator Cauchy-Riesz integral

ψ(A) =
1

2πi

∫
∂G−

ε

ψ(z)(zI −A)−1dz (29)

converges as a function of A in the operator norm and defines a bounded linear
operator ψ(A). In particular, the function ψ(A) = z−α defines a bounded operator
A−α whenever α > 0. The positive powers Aα = (A−α)−1(α > 0) of the
operatorA are defined and unbounded, and their domainsD(Aa) are dense in E if
A is unbounded. One has the continuous embedding D(Aα) ⊂ D(Aβ) if β < α.
The following moment inequality holds:

‖Aαu‖E ≤ M(α, β)
∥∥∥Aβu∥∥∥α/β

E
‖u‖1−α/β

E ,

0 ≤ α ≤ β <∞, u ∈ D(Aβ) (30)
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for some M(α, β) ∈ [1,∞) that does not depend on u ∈ D(Aβ). The operator
A1/2 has nicer spectral properties than the positive operator A. Indeed, using the
identity

λI +A = (
√
λI −A

1
2 )(
√
λI +A

1
2 ),

the inequality (30) for α = 1
2 , β = 1 and the estimate (28) we obtain∥∥∥(√λI −A 1

2 )−1
∥∥∥
E→E

=
∥∥∥(√λI +A

1
2 )(λI +A)−1

∥∥∥
E→E

≤
√
|λ|
∥∥(λI +A)−1∥∥

E→E +M(α, β)
∥∥A(λI +A)−1∥∥ 1

2
E→E

∥∥(λI +A)−1∥∥ 1
2
E→E

≤
√
|λ|M1ε

−1(1 + |λ|)−1

+M(α, β)(1 +M1ε
−1 |λ| (1 + |λ|)−1)(M1ε

−1(1 + |λ|)−1)
1
2 .

Thus, the operator
√
λI −A

1
2 has a bounded inverse for λ ∈ G−ε , and the estimate∥∥∥(√λI −A 1
2 )−1

∥∥∥
E→E

≤M3ε
−1(1 +

√
|λ|)−1

holds for someM3 ∈ [1,∞) does not depend on ε and λ. This means thatB = A
1
2

is a strongly positive operator in the Banach space E. Therefore, the operator −B
is a generator of an analytic semigroup exp {−tB} (t ≥ 0) with exponentially
decreasing norm, when t −→∞, i. e., the following estimates

‖exp(−tB)‖E→E , ‖tB exp(−tB)‖E→E ≤M(B)e−α(B)t(t > 0) (31)

hold for some M(B) ∈ [1,∞), a(B) ∈ (0,∞). From that it follows that the
operator I − e−2TB has the bounded inverse and the following estimate holds:

‖(I − e−2TB)−1 ‖E→E≤M(B)(1− e−2Tα(B))−1. (32)

It is easy to show that v(t) defined on [0, T ] by the formula

v(t) = (I − e−2TB)−1{(e−tB − e−(2T−t)B)v0 + (e−(T−t)B − e−(T+t)B)vT

−(e−(T−t)B − e−(T+t)B)(2B)−1
∫ T

0
(e−(T−s)B − e−(T+s)B)f(s)ds}

+(2B)−1
∫ T

0
(e−|t−s|B − e−(t+s)B)f(s)ds (33)

is the unique solution in C(E) of problem (25) if, for example, v0, vT ∈ D(A2)
and Af(t) ∈ C(E) or f ′(t) ∈ C(E). Sufficient conditions for the well-posedness
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of boundary value problem (25) can be established, if one considers this problem
in certain spaces F (E) of smooth E-valued functions on [0, T ].

A function v(t) is said to be a solution of problem (25) inF (E), if it is a solution
of this problem in C(E) and the function v′′(t) and Av(t) belong to F (E).

As in the case of the space C(E), we say that problem (25) is well-posed in
F (E) if the following two conditions are satisfied:

1. For any f ∈ F (E) and v0, vT ∈ D(A), there exists a unique solution v(t) =
v(t; f(t), v0, vT ) in F (E) of problem (25). This means that an additive and
homogeneous operator v(t; f(t), v0, vT ) is defined which acts from F (E)×
D(A)×D(A) to F (E) and gives the solution of (25) in F (E).

2. v(t; f(t), v0, vT ), regarded as an operator from F (E) × D(A) × D(A) to
F (E), is continuous. Here, F (E) × D(A) × D(A) is understood as the
normed space of the triplets (f(t), v0, vT ), f(t) ∈ F (E) and v0, vT ∈ D(A),
equipped with the norm

||(f(t), v0, vT )||F (E)×D(A)×D(A) = ||f ||F (E) + ||v0||D(A) + ||vT ||D(A).

First, we set F (E) is equal toCα,α0T (E) = Cα,α0T ([0, T ], E), 0 < α < 1, the Banach
space obtained by completion of the set of smooth E-valued functions ϕ(t) on
[0, T ] in the norm

‖ ϕ ‖Cα,α0T (E)= ‖ϕ‖C(E) + sup
0≤t<t+τ≤T

‖ϕ(t+ τ)− ϕ(t)‖E
τα

(T − t)α(t+ τ)α.

As in the case of the space C(E), from the well-posedness of boundary value
problem (25) one derives the coercivity inequality∥∥v′′∥∥

Cα,α0T (E)
+‖Av‖Cα,α0T (E) ≤MC(α)[‖f‖Cα,α0T (E)+ ||Av0||E+||AvT ||E ], (34)

where MC (α)(1 ≤MC(α) <∞) does not depend on v0, vT and f(t).

Theorem 2.13. Suppose v0, vT ∈ D(A), f(t) ∈ Cα,α0T (E)(0 < α < 1). Then,
the boundary value problem (25) is well-posed in Hölder space Cα,α0T (E), if A is
a positive operator in Banach space E. For the solution v(t) in Cα,α0T (E) of the
boundary value problem, the coercive inequality

‖v′′‖Cα,α0T (E)+‖Av‖Cα,α0T (E) ≤
M

α(1− α)
‖ f ‖Cα,α0T (E) +M [‖ Av0||E+||AvT ||E ]

holds, where M is dependent of α, v0, vT and f(t).
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The research interests of Sobolevskii in theory of difference schemes are broad
and include stability and well-posedness of difference problems, construction and
investigation of high order of accuracy difference schemes for elliptic differential
equations. The important results of Sobolevskii in theory of difference schemes
for elliptic equations were published in papers [42–54].

2.5 Partial differential equations of the hyperbolic type

Sobolevskii in the paper [55] successfully applied for the first time the theory of
positive operators to the abstract Cauchy problem for hyperbolic equations

v′′(t) +Av(t) = f(t) (0 ≤ t ≤ T ), v(0) = v0, v
′(0) = v′0 (35)

where A is a self -adjoint positive definite operator on a Hilbert space H .
A function v(t) is called a solution of problem (35) if the following conditions

are satisfied:
i. v(t) is twice continuously differentiable on the segment [0, T ]. The deriva-

tives at the endpoints of the segment are understood as the appropriate unilateral
derivatives.

ii. The element v(t) belongs to D(A) for all t ∈ [0, T ] and the function Av(t)
is continuous on the segment [0, T ].

iii. v(t) satisfies the equations and initial conditions (35).

Theorem 2.14. Suppose that v0 ∈ D(A) , v′0 ∈ D(A
1
2 ) and f(t) are continuously

differentiable on [0, T ] function. Then, there is a unique solution of problem (35)
and the following stability inequalities

max
0≤t≤T

‖v(t)‖H ≤M
[
‖v0‖H +

∥∥∥A−1/2v′0

∥∥∥
H
+ max

0≤t≤T

∥∥∥A−1/2f(t)
∥∥∥
H

]
,

max
0≤t≤T

∥∥∥A1/2v(t)
∥∥∥
H
≤M

[∥∥∥A1/2v0

∥∥∥
H
+ ‖ v′0 ‖H + max

0≤t≤T
‖ f(t) ‖H

]
,

max
0≤t≤T

∥∥∥∥d2v(t)

dt2

∥∥∥∥
H

+ max
0≤t≤T

‖Av(t)‖H ≤M
[
‖ Av0H +

∥∥∥A1/2v′0

∥∥∥
H

+ ‖f(0)‖H +

T∫
0

∥∥f ′(t)∥∥
H
dt


hold, where M does not depend on f(t), t ∈ [0, T ] and v0, v′0.
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The method of operators as a tool for the investigation of the solution to hyper-
bolic differential equations in Hilbert and Banach spaces has been systematically
developed by several authors. A large cycle of these works on stability of differ-
ence schemes for hyperbolic partial differential equations was established under
the assumption that the magnitude of the grid steps τ and h with respect to the
time and space variables are connected. In abstract terms this means, in particular,
that the condition τ ||Ah|| → 0 when τ → 0 is satisfied.

Of great interest is the study of absolute stable difference schemes of a high
order of accuracy for hyperbolic partial differential equations, in which stability
was established without any assumptions in respect of the grid steps τ and h.
Sobolevskii in the paper [56] the first order of accuracy absolute stable difference
scheme 

τ−2(uk+1 − 2uk + uk−1) +Auk+1 = fk,

fk = f(tk), tk = kτ, 1 ≤ k ≤ N − 1, Nτ = T,

τ−1(u1 − u0) + iA1/2u1 = iA1/2u0 + ψ, u0 = ϕ

(36)

for the solutions of problem (35) was studied. The following stability inequalities
for the solutions of difference scheme (36) were established.

Theorem 2.15. Let ϕ ∈ D(A), ψ ∈ D(A1/2). Then, for the solution of difference
scheme (36) the stability inequalities

‖uk‖H ≤
k−1∑
s=1

‖A−1/2fs‖Hτ+ ‖ A−1/2ψ ‖H + ‖ ϕ ‖H , 1 ≤ k ≤ N,

‖A1/2uk‖H ≤
k−1∑
s=1

‖ fs ‖H τ+‖A1/2ϕ ‖H +‖ψ‖H , 1 ≤ k ≤ N,

‖Auk ‖ H ≤ 2
k−1∑
s=2

‖ fs − fs−1 ‖H

+ ‖ f1 ‖H + ‖ A1/2ψ ‖H + ‖ Aϕ ‖H , 1 ≤ k ≤ N

hold.

The application of these results to hyperbolic partial differential equations al-
lows one to obtain a series of stability inequalities. His approach is different from
application of classical technics of PDE. The main aspect of Sobolevskii’s work
is that he has successfully investigated the theory of partial differential equations
independently from classical approaches.
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However, for practical realization of these difference schemes it is first neces-
sary to construct an operator A1/2. This consideration is very difficult even with
the aid of computers. Therefore, in spite of theoretical results the role of their
application of a numerical solution for an initial value problem is not great. The
new first and second order of accuracy difference schemes approximately solving
the abstract initial value problem for hyperbolic equations in a Hilbert spaces were
presented in [56]. Applying this operator approach the stability estimates for the
solution of these difference schemes were obtained.

Moreover, in [58] the high order of accuracy two-step difference schemes gen-
erated by an exact difference scheme for the numerical solutions of this problem
were presented. The convergence and stability estimates for the solutions of these
difference schemes were established. Sobolevskii’s important results in theory of
difference schemes for hyperbolic were published in papers [55–61].

These and other fundamental scientific results of Sobolevskii have been in-
cluded in the treasury of the world of mathematical science!

3 Selected books authored or co-authored by Sobolevskii

1. M. A. Krasnosel’skii, P. P. Zabreiko, E. I. Pustyl’nik and P. E. Sobolevskii,
Integral’nye operatory v prostranstvah summiruemyh funkcii (Integral Operators
in Spaces of Integrable Functions), Nauka, Moscow, 1966, 499 pages.

The investigation of many mathematical problems is significantly simplified,
if it is possible to reduce them to equations involving continuous or completely
continuous operators in function spaces. In particular, this is true for nonlinear
boundary value problems and for integro-differential and integral equations. To
effect a transformation to equations with continuous or completely continuous op-
erators, it is usually necessary to reduce the original problem to one involving
integral equations. Here, negative and fractional powers of those unbounded dif-
ferential operators which constitute ’principal parts’ of the original problem, are
used in an essential way. Next, there is chosen or constructed a function space
in which the corresponding integral operator possesses sufficiently good proper-
ties. Once such a space is found, the original problem can often be analyzed by
applying general theorems (Fredholm theorems in the study of linear equations,
fixed point principles in the study of nonlinear equations, methods of the theory of
cones in the study of positive solutions, etc.). In other words, the investigation of
many problems is effectively divided into three independent parts: transformation
to an integral equation, investigation of the corresponding integral expression as
an operator acting in function spaces, and, finally, application of general methods
of functional analysis to the investigation of the linear and nonlinear equations.
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2. A. Ashyralyev and P. E. Sobolevskii, Well-Posedness of Parabolic Difference
Equations, Vol. 69 of Operator Theory: Advances and Applications, Birkhäuser
Verlag, Basel, Boston, Berlin, 1994, 349 pages.

Mathematical models described by various real dynamic processes can be re-
duced to boundary value problems for partial differential equations. A well-known
and widely applied method of approximating the solutions of various problems of
partial differential equations is the method of difference schemes. The main theo-
retical questions center around their accuracy and stability. The advancements in
modern computer technology make it possible to solve difficult and computation-
ally demanding problems. Hence, a task of current interest of this monograph is
the construction and investigation of highly accurate difference schemes for vari-
ous boundary value problems for partial differential equations. The monograph is
devoted to the construction and investigation of highly accurate difference schemes
for parabolic boundary value problems, based on Padè approximations. The inves-
tigation is based on a new notion of positivity of difference operators in Banach
spaces, which allows one to deal with difference schemes of arbitrary order of ac-
curacy. Establishing coercivity inequalities allows one to obtain sharp convergence
rates, that is two-sided estimates. The proofs are based on results from interpola-
tion theory of linear operators. This approach has led to the development of the
theory of difference schemes of high order accuracy for various boundary value
problems for partial differential equations.

3. A. Ashyralyev and P. E. Sobolevskii, New Difference Schemes for Partial
Differential Equations, Birkhäuser Verlag: Basel. Boston. Berlin, Vol.148 of Op-
erator Theory: Advances and Applications, 2004, 443 pages.

The monograph is devoted to the construction and investigation of the new high
order of accuracy difference schemes for approximating the solutions of regular
and singular perturbation boundary value problems for partial differential equa-
tions. The construction is based on the exact difference scheme and Taylor’s
decomposition on the two or three points. This approach permits essentially to
extend and enlarge the class of problems where the theory of difference methods
is applicable. Namely, now it is possible to investigate the differential equations
with variable coefficients and regular and singular perturbation boundary value
problems. The investigation is based on new coercivity inequalities.

At present, many researchers apply this methodology to investigate various
problems of mathematical physics and stochastic models which appear in applied
problems.

4. P. E. Sobolevskii, Difference Methods for the Approximate Solution of Par-
tial Differential Equations, Izdat. Voronezh. Gosud. Univ., Voronezh, 1975, 150
pages (in Russian).
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