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Abstract. The discrete-time Holling type II prey-predator models with the refuge and
Allee effects are formulated and studied. The existence of fixed points and their stabilities
are investigated for both hyperbolic and non-hyperbolic cases. Numerical simulations are
conducted to demonstrate the theoretical results.
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1 Introduction

Predator-prey models are used to describe naturally occurring biological or eco-
logical relationships between two interacting species. These models have been
studied extensively by researchers from the fields of mathematical biology and
mathematical ecology. One of the important predator-prey models is Holling type
II model. The real life application of this model is the Lynx and its prey the snow-
shoe Hare study documented by the Hudson Bay company for the time interval
1845-1935 [2]. There is a little attention to the discrete case because of the com-
plexities of this model. In this study, we focus on analyzing how the Holling type
II response [6] affects the dynamic complexities of prey predator interactions with
Allee and refuge effects.

We organize this paper as follows: In Section 2, we incorporate a refuge effect
into the discrete prey predator model with Holling type II, then we show the exis-
tence and stability of fixed points. We use The Center Manifold Theorem for the
non-hyperbolic fixed point. We present some numerical simulations of the ana-
lytic results to compare them with the results of [1]. In Section 3, we incorporate
an Allee effect into the discrete prey predator model with Holling type II, then we
show the existence and stability of fixed points. Some numerical simulations of
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the analytic results are presented to compare them with the results of [1]. Some
values of the parameters for which the model undergoes the Neimark-Sacker bi-
furcation in the positive region, are derived. Also, the global behavior of the model
is discussed. Finally, in Section 4 we draw conclusions.

The following prey-predator model with the Holling type II functional response
[7] has been studied by many authors [1, 6, 9].

x′ = ax(1− x)− α mxy

1 + εx
,

y′ = (
mx

1 + εx
− β)y,

(1)

where all the parameters are positive, and

• α is conversion,

• β is predator’s death rates,

• a is prey intrinsic growth parameter,

• m is half saturation parameter,

• ε is limitation of the growth velocity of the predator population with increase
in the number of prey.

We refer to the works in [4, 9, 11]. Equilibrium points of this model are stable or
limit cycles.
The discrete prey-predator model with Holling type II studied by Agiza et al. [1]
is as follows:

xn+1 = axn(1− xn)−
bxnyn

1 + εxn
,

yn+1 =
dxnyn

1 + εxn
,

(2)

where all parameters are non-negative. This map is non-invertible map.

We first study this model with a fixed number of prey in refuge, then with an
Allee effect. The study of the dynamical properties of the resulting models allows
us to have information about the future behavior of prey predator populations.

2 Holling type II model with a refuge effect

The study of the consequences of hiding behavior of prey on the dynamics of
predator prey interactions can be recognized as a major issue in applied mathe-
matics and theoretical ecology. A simple prey response to predators involves the
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use of refuges: places or situations where predation risk is somehow reduced.
The traditional ways by which the effects of prey refuges have been incorporated
in predator-prey interactions is to consider two types of refuges in the literature:
those that protect a constant fraction of prey and those that protect a constant num-
ber of prey [5, 8, 10, 12, 13]. We study the following model obtained by adding a
refuge effect R to prey in the model given by [1]:

xn+1 = axn(1− xn)−
b(xn −R)yn

1 + e(xn −R)
,

yn+1 =
d(xn −R)yn

1 + e(xn −R)
,

(3)

where a, b, d, e, R are positive.

2.1 Fixed points of the map defined by (3) and their stability

In this section, we investigate the fixed points of the map defined by (3) and their
stability conditions. The solution of the following system of equations gives us
three non-negative fixed points:

x = ax(1− x)− b (x−R)y
1 + e(x−R)

,

y =
d(x−R)y

1 + e(x−R)
.

(4)

The fixed points are :

a. for any values of parameters, there exists extinction fixed point E0 = (0, 0).

b. there exists one exclusion fixed point E1 = (a−1
a , 0) for a > 1.

c. there exists one positive fixed point E2 = (Φ

Q ,−
dΦ(Q+aΦ−aQ)

bQ2 ) for

• Q < Φ < 0 and a > Q
Q−Φ

, or

• 0 < Φ < Q and a > Q
Q−Φ

,

where Q = d− e and Φ = 1 +RQ.

The Jacobian matrix of the map (3) is as follows:

J(x, y) =


−2xa+ a− by

(e(x−R)+1)2
b(x−R)

e(R−x)−1

dy
(e(x−R)+1)2

d(x−R)
e(x−R)+1

 .
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For the fixed point E0,

J(E0) =

(
a bR

1−eR
0 dR

eR−1

)
.

The eigenvalues are λ1 = a and λ2 = dR
eR−1 . The fixed point E0 is hyperbolic if

neither of these eigenvalues is on the unit circle, that is, |λ1,2| 6= 1. In addition,
E0 is a stable fixed point (sink) if a < 1 (the map has only one non-negative fixed
point), d < eR−1

R , and R > 1
e . Also, if a < 1, d < 1−eR

R , and e < 1
R , then

E0 is stable (oscillatory). If a = 1 or d = eR−1
R or d = 1−eR

R , then one of the
eigenvalues of J(E0) lies on the unit circle, that is, |λ| = 1. As a result, for these
values of parameters, the fixed point is non-hyperbolic.

We consider only the case a = 1 . We need to write the system in the following
form to use the Center Manifold Theorem:

xn+1 = Axn + f(xn, yn),

yn+1 = Byn + g(xn, yn).
(5)

Furthermore f(0, 0) = 0, g(0, 0) = 0, Df(0, 0) = 0, Dg(0, 0) = 0. Let Mc =
{(x, y) ∈ RxR : y = h(x), h(0) = Dh(0) = 0}. If we substitute the parameters
a = 1, b = 0.2, d = 3.5, e = 0.9, and R = 1/9, then we obtain the following
Jacobian matrix at E0:

J(0,0)=

(
1 0.0246914
0 −0.432099

)
.

Hence, the fixed point E0 = (0, 0) is non-hyperbolic. Now, the system (3) can be
written as

xn+1 = xn + 0.0246914yn + f (xn, yn) ,

yn+1 = −0.432099yn + g (xn, yn) ,
(6)

where

f(x, y) = −x2 − 0.0246914y −
0.2y

(
x− 1

9

)
1 + 0.9

(
x− 1

9

) , (7)

and

g(x, y) = 0.432099y +
3.5y

(
x− 1

9

)
1 + 0.9

(
x− 1

9

) . (8)

Let
h(x) = c1x

2 + c2x
3 +O(x4), (9)
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for c1, c2 ∈ R. In order to compute the constants c1 and c2, the following func-
tional equation should be solved:

h (xn + 0.0246914h(xn) + f (xn, h(xn)))

= −0.432099h(xn) + g (xn, h(xn)) . (10)

By solving equation (10), we find c1 = c2 = 0. Now, on the center manifold
y = h(x), we obtain the following one dimensional map:

xn+1 = xn − x2
n +O(x4

n). (11)

Let f(x) = x − x2 + O(x4). Since f ′(0) = 1 and f ′′(0) = −2 < 0, by the
Schwarzian derivative and Center Manifold theorems [3], the origin is semistable
from right under the given set of parameters (Similarly, we get the same results for
d = eR−1

R and d = 1−eR
R ).

For the fixed point E1,

J(E1) =

(
2− a b(−Ra+a−1)

e+a(e(R−1)−1)

0 d(a(R−1)+1)
e+a(e(R−1)−1)

)
.

The eigenvalues are λ1 = 2−a and λ2 = d(a(R−1)+1)
e+a(e(R−1)−1) . Then E1 is a stable fixed

point (sink) if 1 < a < 3 and |λ2| < 1. Otherwise, it is unstable. If a = 3 or
d = 1+a(R−2)

1+a(R−1) , then similarly, the center manifold theorem must be used as above.
For the fixed point E2,

J(E2) =

(
a− 2ap

Q + dp(a(p−Q)+Q)
(Q+e(p−QR))2 − b

d

− d2p(a(p−Q)+Q)
b(Q+e(p−QR))2 1

)
.

The positive fixed point is stable if the eigenvalues of the Jacobian matrix are
|λ1,2| < 1. This case will be investigated in the numerical simulations section.

We write some codes with Mathematica 10 for the calculation of non-negative
fixed points under some conditions of parameters, for simulations of phase dia-
grams, and time series in Numerical Simulations sections.

2.2 Numerical simulations for the model (3)

We first study the model when we vary only the parameter R (refuge effect) and
fix the others with respect to the above analytical results. Second, we study the
model (3) for varying values of the parameter e. E1 and E2 are not in the positive
region if 0 < a < 1. There is no biological meaning when the trajectory of the
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map is oscillating on the positive and negative regions for 0 < a < 1. Thus, we
will give the numerical simulation only when a > 1 and d > e.

Without loss of the generality, we fix the parameters a = 4, b = 0.2, d =
3.5, e = 0.1 and assume R varies. Under this set of parameter values, E2 is a
spiral sink if 0.09 < R < 0.24, and it is an oscillatory saddle if 0.24 < R < 0.46.
For example, if R = 1/9, the fixed points are E0 = (0, 0), E1 = (0.75, 0) and
E2 = (0.405229, 9.77979) with the eigenvalues λE0 = {4.,−0.393258}, λE1 =
{−2., 2.10183}, and λE2 = {−0.0438074±0.869627i}, respectively. In this case
E0 is an oscillatory saddle, E1 is an oscillatory source, and E2 is a stable focus
(spiral sink).

Next, we fix the parameters a = 4, b = 0.2, d = 3.5, R = 1/9 and assume
e varies. The positive fixed point E2 is a spiral sink if 0 < e < 0.92, it is an
oscillatory sink if 0.92 < e < 1.45, otherwise it is unstable. For example, the
fixed points are E0 = (0, 0), E1 = (0.75, 0) and E2 = (0.495726, 8.82351) when
e = 0.9. The eigenvalues are λE0 = {4.,−0.432099}, λE1 = {−2., 1.41975},
and λE2 = {0.0301804± 0.18242i}, respectively. In this case E0 is an oscillatory
saddle, E1 is an oscillatory source, and E2 is a spiral sink. We give some phase
portraits for different values of e (Figure 1, and Figure 2).

Figure 1. Phase portrait for the model (3) for e = 0.1

3 Holling type II model with an Allee effect

The Allee effect occurs when positive density-dependence dominates at low densi-
ties. When the Allee effect is sufficiently strong, there is a critical threshold below
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Figure 2. Phase portrait for the model (3) for e = 1.2

which populations experience rapid extinction. Consequently, the importance of
the Allee effect has been widely recognized in conservation biology.

For many sexually reproducing organisms, finding mates becomes more diffi-
cult at low densities. Species with low dispersal rates are less likely to encounter
mates at small population sizes.

Let I(x) = x
x+K be the probability of finding a mate where 1/K > 0 is an

individual’s searching efficiency. We study the following model which is given by
[1] by adding the mate limitation Allee effect to the prey:

xn+1 =

(
axn(1− xn)−

bxnyn
1 + exn

)
xn

K + xn
,

yn+1 =
dxnyn

1 + exn
,

(12)

where a, b, d, e,K are positive.

3.1 Fixed points of the map defined by (12) and their stability

In this section, we investigate the fixed points of the map defined by (12) and their
stability conditions. The solution of the following system of equations gives us
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four non-negative fixed points:

x =

(
ax(1− x)− b xy

1 + ex

)
x

K + x
,

y =
dxy

1 + ex
.

(13)

The fixed points are

a. for any values of parameters, there exists extinction fixed point A0 = (0, 0),

b. there exist two exclusion fixed points A1,2 = (a−1±M
2a , 0) if a > 1 and K <

(a−1)2

4a ,

c. there exists one positive fixed point A3 =
(

1
Q ,

d(a(Q−1)−Q(1+QK))
bQ2

)
for Q >

1 and a > Q(1+KQ)
Q−1 , where M =

√
(a− 1)2 − 4aK and Q = d− e.

The Jacobian matrix of the map (12) is given by

J(x, y) =

 −x(a(x(2x−1)+K(3x−2))(ex+1)2+b(x+K(ex+2))y)
(K+x)2(ex+1)2 − bx2

(K+x)(ex+1)
dy

(ex+1)2
dx

ex+1

 .

For the fixed point A0,

J(A0) =

(
0 0
0 0

)
.

A0 is stable .
For the fixed point A1 = (a−1−M

2a , 0),

J(A1) =

(
M+a(−a+6K+M+4)−1

2a(K+1) − b(−a+M+1)2

(−a(2K+1)+M+1)(Me+e−a(e+2))

0 d(−a+M+1)
Me+e−a(e+2)

)
.

If |M+a(−a+6K+M+4)−1
2a(K+1) | < 1 and | d(−a+M+1)

Me+e−a(e+2) | < 1, thus A1 is a stable fixed
point.
For the fixed point A2 = (a−1+M

2a , 0),

J(A2) =

(
−M+a(a−6K+M−4)+1

2a(K+1) − b(a+M−1)2

(2Ka+a+M−1)(a(e+2)+e(M−1))

0 d(a+M−1)
a(e+2)+e(M−1)

)
.

If | − M+a(a−6K+M−4)+1
2a(K+1) | < 1 and | d(a+M−1)

a(e+2)+e(M−1) | < 1, thus A2 is a stable fixed
point.
For the fixed point A3,
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J(A3) =

(
(2dK−eK+1)Q2+a(d(e−1)−e(e+1))

dQ(KQ+1) − b
QKd+d

−KQ2−Q+a(Q−1)
b 1

)
.

The positive fixed point is stable if the eigenvalues of the Jacobian matrix are
|λ1,2| < 1. This case will be investigated in the numerical simulations section.

3.2 Global behavior of model (12)

The extinction fixed point A0 of model (12) is stable for any values of parameters.
By comparison we have

xn+1 =

(
axn(1− xn)−

bxnyn
1 + exn

)
xn

K + xn
< axn(1− xn)−

bxnyn
1 + exn

,

and

axn(1− xn)−
bxnyn

1 + exn
< axn(1− xn) < axn.

Hence, if a < 1,

lim
n→∞

xn = 0.

Since yn+1 = dxnyn
1+exn

,
lim
n→∞

yn = 0,

which means A0 is globally attracting and globally asymptotically stable if a < 1.
Consequently, if the growth parameter is small (a < 1), both populations become
extinct even with large initial values. On the other hand, the other fixed points A1,
A2 and A3 cannot be globally stable because of the local stability of A0.

3.3 Numerical simulations for the model (12)

We first study the model (12) when we change only the parameter e and fix the
others with respect to the above analytical results. We compare our results with
the results of [1]. We fix the parameters a = 4.1, b = 3, d = 3.5,K = 0.2, and
assume that e varies as in [1]. When the control parameter e varies in (0, 0.85),
(0.85, 1.53) and [1.53, 2.03] the stability/unstability of positive fixed point changes
through various types of bifurcations, but A0 is always stable, and A1,2 are always
saddle in the positive region. A3 is unstable (spiral source) if 0 < e < 0.85. It is
stable (spiral sink) if 0.85 < e < 1.53, and it is stable (sink) if 1.53 ≤ e ≤ 2.03.



Discrete-time Holling type II models with Allee and refuge effects 145

If e > 2.03, it is not a positive fixed point anymore. We consider the following
cases :

Let e = 1.9 then A0 = (0, 0), A1 = (0.0712257, 0), A2 = (0.684872, 0) and
A3 = (0.625, 0.158594) are the fixed points. Eigenvalues are
λA1 = {1.66071, 0.219575} , λA2 = {1.04163,−0.947291} and
λA3 = {0.951751,−0.561167} , respectively. Since |λA3 | < 1, the positive fixed
point is asymptotically stable (sink). A1, and A2 are saddles (Figure 3).

Let e = 0.86, then the positive fixed point is A3 = (0.378788, 0.450302)
(the others as same as in case e = 1.90). Eigenvalues are λA3 = {0.746513 ±
0.662383i}. Since |λA3 | = 0.998015 < 1, then the positive fixed point is stable
(spiral sink) (Figure 4).

Now, let e = 0.85, then the positive fixed point is A3 = (0.377358, 0.450303)
(the others as same as in case e = 1.90). We observe that the behavior of the model
becomes very complicated including the Neimark-Sacker bifurcation. The fixed
point A3 loses its stability through a Neimark-Sacker bifurcation and an invariant
closed curve is created around the fixed point when e = 0.85 (Figure 5).

Figure 3. Phase portrait for the model (12) for e = 1.9

When we compare these results with results of [1], we can see that Allee effect
has a strong effect on the stability of system and changes the parameter intervals
for stability. When e is decreased, the behavior of the system changes to a chaotic
one. We give the time series diagram of x in Figure 6. The time series of y is also
similar but only the domain is different.
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Figure 4. Phase portrait for the model (12) for e = 0.86

Figure 5. Phase portrait for the model (12) when a Neimark-Sacker bifurcation
exists for e = 0.85

4 Conclusion

We study these models since not only the discrete Holling type model has richer
features and more complicated dynamics than in the continuous case, but also it is
more realistic with an Allee effect and refuge effect than the model of [1]. The sta-
bility of the fixed points and bifurcations are analyzed. We show that the Neimark-
Sacker bifurcation parameter value e is changed with Refuge and Allee effects.
We find the intervals of e where the positive fixed point is stable or unstable. We
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Figure 6. Time series of x for the model (12) for e = 0.9

use the Center Manifold Theorem to investigate whether the non-hyperbolic fixed
point is stable or not. We see that both the mating limitation Allee effect and
Refuge effect have strong impacts on the stability of the system.
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