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On some analogues of periodic problems for Laplace
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Abstract. In this paper, we study solvability of new classes of nonlocal boundary value

problems for the Laplace equation in a ball. The considered problems are multidimen-

sional analogues (in the case of a ball) of classical periodic boundary value problems

in rectangular regions. To study the main problem, first, for the Laplace equation, we

consider an auxiliary boundary value problem with an oblique derivative. This problem

generalizes the well-known Neumann problem and is conditionally solvable. The main

problems are solved by reducing them to sequential solution of the Dirichlet problem and

the problem with an oblique derivative. It is proved that in the case of periodic conditions,

the problem is conditionally solvable; and in this case the exact condition for solvability

of the considered problem is found. When boundary conditions are specified in the anti-

periodic conditions form, the problem is certainly solvable. The obtained general results

are illustrated with specific examples.
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1 Introduction

Let Ω = {x ∈ Rn : |x| < 1} be a unit ball, n ≥ 2, ∂Ω = {x ∈ Rn : |x| = 1} be a

unit sphere. For any point x ∈ Ω we compare the point x∗ = (α1x1, α2x2, ..., αnxn),
where α1 = −1, and others αj , {j = 2, 3, ..., n} take one of the values ±1.

Denote

∂Ω+ = {x ∈ ∂Ω : x1 ≥ 0} , ∂Ω− = {x ∈ ∂Ω : x1 ≤ 0} ,

Γ = {x ∈ ∂Ω : x1 = 0} .

The work was supported by a grant from the Ministry of Science and Education of the Republic of

Kazakhstan (Grant No.AP05131268).
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Further, let a = (a1, a2, ..., an) be an arbitrary fixed point in the domain Ω.

Denote

∂u

∂ℓa
(x) = (x− a,∇u) ≡

n
∑

j=1

(xj − aj)
∂u

∂xj
(x) .

If a = (0, 0, ..., 0) ≡ 0, then

∂u

∂ℓ0

(x) =

n
∑

j=1

xj
∂u

∂xj
(x) ≡ r

∂u

∂r
(x) , r = |x|.

Since for all x ∈ ∂Ω, r ∂u
∂r

(x)
∣

∣

∂Ω = ∂u
∂v

(x), where ν is a normal vector to the

sphere ∂Ω, then in the case a ≡ 0 direction of the vector ℓa coincides with the

direction of the normal vector ν.

Introduce an operator ISu(x) = u(x∗). We consider the following problems in

the domain Ω.

Problem 1.1. Find a harmonic function u(x) ∈ C2 (Ω) ∩ C1
(

Ω̄
)

, satisfying the

conditions

u(x)− u(x∗) = g0(x), x ∈ ∂Ω+, (1)

∂u

∂ℓa
(x) +

∂u

∂ℓa
(x∗) = g1 (x) , x ∈ ∂Ω+. (2)

Problem 1.2. Find a harmonic function u (x) ∈ C2 (Ω) ∩ C1
(

Ω̄
)

, satisfying the

conditions

u(x) + u(x∗) = g0(x), x ∈ ∂Ω+, (3)

∂u

∂ℓa
(x)−

∂u

∂ℓa
(x∗) = g1 (x) , x ∈ ∂Ω+. (4)

We will call on Problem 1.1 as a periodic boundary value problem, and Problem

1.2 as an anti-periodic one. Note that Problems 1.1 and 1.2 for the case a ≡ 0 have

been studied in [1–4].

If x ∈ Γ, then the point x∗ = (0, α2x2, ..., αnxn) also belongs to Γ. Then from

the boundary condition (1) it follows that

g0 (x) = u (x)− u (x∗)|Γ = − [u (x∗)− u (x)]|Γ = −g0 (x
∗) .

Therefore for the existence of a smooth solution to Problem 1.1 the following

matching conditions are necessary:

g0 (0, x2, ..., xn) = −g0 (0, α2x2, ..., αnxn) , (5)



On some analogues of periodic problems 15

∂g0

∂xj
(0, x2, ..., xn) = −

∂g0 (0, α2x2, ..., αnxn)

∂xj
, j = 1, ...n, (6)

g1 (0, x2, ..., xn) = g1 (0, α2x2, ..., αnxn) . (7)

Similar conditions are required for the existence of a smooth solution to Problem

1.2, namely,

g0 (0, x2, ..., xn) = g0 (0, α2x2, ..., αnxn) , (8)

∂g0

∂xj
(0, x2, ..., xn) =

∂g0 (0, α2x2, ..., αnxn)

∂xj
, j = 1, ...n, (9)

g1 (0, x2, ..., xn) = −g1 (0, α2x2, ..., αnxn) . (10)

2 Auxiliary statements

In this section we give some auxiliary statements related to properties of mapping

Sx = x∗.

It is obvious that if x ∈ Ω, or x ∈ ∂Ω, then x∗ = Sx ∈ Ω, or x∗ = Sx ∈ ∂Ω.

Let

Λu (x) =
n
∑

j=1

xj
∂u(x)

∂xj
,
∂u

∂a
(x) =

n
∑

j=1

aj
∂u

∂xj
(x) .

The following statement is true.

Lemma 2.1. Let u (x) be a smooth function in the domain Ω. Then the following

equalities hold:

∂

∂a
ISu (x) =

n
∑

i=1

αiaiISuxi
(x), (11)

ΛISu (x) = ISΛu (x) , (12)

∆ISu (x) = IS∆u (x) . (13)

Proof. Since

∂

∂xi
ISu (x) =

∂

∂xi
u (α1x1, ..., αnxn) = αiISuxi

(x) ,

then by the definition of the derivative ∂u
∂a
(x), we get

∂

∂a
ISu (x) =

n
∑

i=1

ai
∂

∂xi
IS (x) =

n
∑

i=1

αiaiISuxi
(x).
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Further,

ΛISu(x) =
n
∑

i=1

xi
∂

∂xi
u (α1x1, ..., αnxn) =

n
∑

i=1

αixiISuxi
(x) = ISΛu(x).

Finally, equalities

∂2

∂x2
i

ISu(x) =
∂

∂xi
αiISuxi

(x) = αi
∂

∂xi
ISuxi

(x) = α2
i ISuxixi

(x) = ISuxixi
(x)

imply

∆ISu(x) =
n
∑

i=1

ISuxixi
(x) = IS

n
∑

i=1

uxixi
(x) = IS∆u(x).

Corollary 2.2. If u(x) is a harmonic function in the domain Ω, then functions

ΛISu (x) and ∂
∂ℓa

ISu (x) are also harmonic in Ω.

Further, for any function u (x) given in the domain Ω̄ we denote

v(x) =
u(x) + u(x∗)

2
, w =

u(x)− u(x∗)

2
. (14)

It is obvious that u(x) = v(x) + w(x). Moreover, we have

v(x) = ISv(x), w(x) = −ISw(x), x ∈ Ω̄. (15)

The following statement is true.

Lemma 2.3. Let u (x) be a smooth function in the domain Ω̄. Then

∂

∂ℓa
v(x) +

∂

∂ℓa
v(x∗) = 2

n
∑

i=1

(

xi −
1 + αi

2
ai

)

vxi
(x), x ∈ Ω̄ , (16)

∂

∂ℓa
v(x)−

∂

∂ℓa
v(x∗) =

n
∑

i=1

(1 − αi) aivxi
(x), x ∈ Ω̄, (17)

∂

∂ℓa
w (x) +

∂

∂ℓa
w (x∗) = −

n
∑

i=1

(1 − αi) aiwxi
(x), x ∈ Ω̄, (18)

∂

∂ℓa
w(x)−

∂

∂ℓa
w(x∗) = 2

n
∑

i=1

(

xi −
1 + αi

2
ai

)

wxi
(x), x ∈ Ω̄ . (19)
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Proof. Since the operators Λ and IS commute, then from the first equality of for-

mula (15) for all x ∈ Ω̄ we have

∂

∂ℓa
v(x) + IS

∂

∂ℓa
v(x) =

∂

∂ℓa
ISv(x) + IS

∂

∂ℓa
v(x)

=

(

Λ −
∂

∂a

)

ISv(x)+IS

(

Λ −
∂

∂a

)

v(x) = 2ISΛv(x)−IS
∂

∂a
v(x)−

∂

∂a
ISv(x)

= IS

(

n
∑

i=1

2xivxi
(x)

)

− IS

(

n
∑

i=1

(1 + αi) aivxi
(x)

)

= 2IS

[

n
∑

i=1

(

xi −
1 + αi

2
ai

)

vxi
(x)

]

.

Hence, for the function v(x) we get

∂

∂ℓa
v(x) + IS

∂

∂ℓa
v(x) = 2IS

[

n
∑

i=1

(

xi −
1 + αi

2
ai

)

vxi
(x)

]

.

Applying the operator IS to the both side of this equality, we obtain

∂

∂ℓa
v(x) + IS

∂

∂ℓa
v(x) = 2

[

n
∑

i=1

(

xi −
1 + αi

2
ai

)

vxi
(x)

]

.

This yields (16). By the similar way, we get the equality

∂

∂ℓa
v(x)− IS

∂

∂ℓa
v(x) = −IS

(

n
∑

i=1

(1 − αi) aivxi
(x)

)

.

Then we have

∂

∂ℓa
v(x)− IS

∂

∂ℓa
v(x) =

n
∑

i=1

(1 − αi) aivxi
(x).

Equality (17) is proved.

Now we prove the equalities (18) and (19). From the second equality of formula

(15) for all x ∈ Ω̄ we get Λw(x) = −ΛISw(x) = −ISΛw(x) and ∂
∂a
w(x) =

−
n
∑

i=1

aiαiISwxi
(x). Then

∂

∂ℓa
w (x) + IS

∂

∂ℓa
w (x) = Λw (x)−

∂

∂a
w (x) + ISΛw (x)− IS

∂

∂a
w (x)
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= −ISΛw (x) + ISΛw (x) +
n
∑

i=1

aiαiISwxi
(x)−

n
∑

i=1

aiISwxi
(x)

= −IS

(

n
∑

i=1

(1 − αi) aiwxi
(x)

)

.

Consequently,

∂

∂ℓa
w (x) + IS

∂

∂ℓa
w (x) = −IS

(

n
∑

i=1

(1 − αi) aiwxi
(x)

)

.

Applying the operator IS to the both side of this equality, we have

∂

∂ℓa
w (x) + IS

∂

∂ℓa
w (x) = −

n
∑

i=1

(1 − αi) aiwxi
(x).

Thus, (18) is true. Similarly,

∂

∂ℓa
w (x)− IS

∂

∂ℓa
w (x) = −

∂

∂ℓa
ISw (x)− IS

∂

∂ℓa
w (x) = −2Λw (x)

+
∂

∂a
w (x)+IS

∂

∂a
w (x) = −IS

(

n
∑

i=1

2xivxi
(x)

)

−IS

(

n
∑

i=1

(1 + αi) aivxi
(x)

)

= −2IS

[

n
∑

i=1

(

xi −
1 + αi

2
ai

)

vxi
(x)

]

,

i.e., the following equality holds:

∂

∂ℓa
w (x)− IS

∂

∂ℓa
w (x) = −2IS

[

n
∑

i=1

(

xi −
1 + αi

2
ai

)

vxi
(x)

]

.

Hence, we get (19).

Let bi =
1
2
(1 + αi) ai, i = 1, 2, ..., n. Introduce a vector b = (b1, b2, ..., bn).

If a ∈ Ω, then b ∈ Ω. Indeed, for any i = 1, 2, ..., n we have the inequality

1 + αi ≤ 2. Therefore,

|b|2 =
n
∑

i=1

b2
i =

1

4

n
∑

i=1

(1 + αi)
2a2

i ≤
1

4

(

n
∑

i=1

4a2
i

)

= |a|2 < 1 ⇒ b ∈ Ω.
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Let

∂u(x)

∂ℓb
= (x1 − b1)

∂u(x)

∂x1

+ (x2 − b2)
∂u(x)

∂x2

+ ...+ (xn − bn)
∂u(x)

∂xn
.

Then equalities (16) and (19) can be rewritten as

(1 + IS)
∂

∂ℓ
v(x) = 2

∂v(x)

∂ℓb
, (20)

(1 + IS)
∂

∂ℓ
w(x) = 2

∂w(x)

∂lb
. (21)

3 On the generalized Neumann problem

We consider the following problem

∆v (x) = 0, x ∈ Ω, (22)

∂v

∂ℓa
(x) = h (x) , x ∈ ∂Ω. (23)

Solution of problem (22) -(23) is called a harmonic function v (x) from the class

C2 (Ω) ∩ C
(

Ω̄
)

satisfying condition (23) in the classical sense.

Note that problem (22) - (23) in the case n = 3, a = (0, 0, a3) has been studied

in [5]. If a ∈ Ω, then the results, obtained in [5], carry over without changes for

the general case. We give the main statement concerning to problem (22) -(23).

Theorem 3.1. Let a ∈ Ω, h (x) ∈ C (∂Ω). Then for solvability of problem (22) -

(23) it is necessary and sufficient that the following condition holds

∫

∂Ω

1 − |a|2

|a− y|n
h (y)dsy = 0. (24)

If a solution of the problem exists, then it is unique up to a constant term and is

represented as

v (x) =

1
∫

0

t−1w (a+ t (x− a)) dt,

where w(x) is a solution of the following Dirichlet problem

∆w (x) = 0, x ∈ Ω;w (x) = h (x) , x ∈ ∂Ω, (25)

moreover w(a) = 0.
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4 Uniqueness of the solution of the main problem

We study uniqueness of a solution of Problem 1.1. The following statement is true.

Theorem 4.1. If a ∈ Ω and a solution of Problem 1.1 exists, then it is unique up

to a constant term.

Proof. Let u (x) be a solution of the homogenous problem 1.1. From the boundary

condition (1) it follows that

u(x) = u(x∗), x ∈ ∂Ω+, u(x
∗) = u(x), x ∈ ∂Ω−.

Consequently, u(x) = u(x∗), x ∈ ∂Ω. Thus,

∂

∂ℓa
u (x) =

∂

∂ℓa
ISu (x) , x ∈ ∂Ω. (26)

On the other hand, from the boundary condition (2) we obtain

∂u (x)

∂ℓa
= −IS

[

∂u (x)

∂ℓa

]

, x ∈ ∂Ω+; IS

[

∂u (x)

∂ℓa

]

= −
∂u (x)

∂ℓa
, x ∈ ∂Ω−.

Thus
∂u (x)

∂ℓa
= −IS

[

∂u (x)

∂ℓa

]

, x ∈ ∂Ω. (27)

Then the equalities (26) and (27) imply

0 = IS
∂

∂ℓa
u (x) +

∂

∂ℓa
ISu (x) , x ∈ ∂Ω.

Further, using (15) for all x ∈ ∂Ω, we have

IS
∂

∂ℓa
u (x) +

∂

∂ℓa
ISu (x) = 2ISΛu (x)−

n
∑

i=1

(1 + αi) aiISuxi
(x)

= 2IS

n
∑

i=1

[(xi − bi)uxi
] (x) = 2IS

∂u(x)

∂lb
, x ∈ ∂Ω.

Thus, for all x ∈ ∂Ω the following condition holds

IS
∂u(x)

∂lb
= 0 ⇔

∂u(x)

∂lb
= 0, x ∈ ∂Ω. (28)

Consequently, function u(x) is a solution of the following problem

∆u(x) = 0, x ∈ Ω;
∂u(x)

∂lb
= 0, x ∈ ∂Ω. (29)

Since b ∈ Ω, then by Theorem 1 the solution of problem (29) is the function

u(x) ≡ C, x ∈ Ω̄, C = const. Theorem is proved.
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The following statement is proved similarly.

Theorem 4.2. If a ∈ Ω and a solution of Problem 1.2 exists, then it is unique.

5 Existence of the solution

In this section we study existence of solutions of Problems 1.1 and 1.2. Let u(x)
be a solution of Problem 1.1, and functions v(x) and w(x) be defined by (14). It

is obvious that each of these functions is harmonic in the domain Ω. Further, the

boundary condition (1) yields

w(x)|∂Ω+
=
u(x)− u(x∗)

2

∣

∣

∣

∣

∂Ω+

=
1

2
g0(x),

w(x)
∣

∣

∂Ω−
= −

u(x∗)− u(x)

2

∣

∣

∣

∣

x∗∈∂Ω+

= −
1

2
g0(x

∗).

Introduce the function

2g̃0(x) =

{

g0(x), x ∈ ∂Ω+,

−g0(x
∗), x ∈ ∂Ω−

.

Then w(x) |∂Ω = g̃0 (x). If the function g0 (x) is smooth in the domain ∂Ω+,

then by the matching conditions (5) - (6) the function g̃0 (x) will have the same

smoothness in the domain ∂Ω. For example, if g0 (x) ∈ Cλ+1 (∂Ω+) , 0 < λ < 1,

then g̃0 (x) ∈ Cλ+1 (∂Ω) . Therefore, for the function w(x) we get the following

Dirichlet problem

∆w(x) = 0, x ∈ Ω;w(x) |∂Ω = g̃0(x). (30)

If g̃0 (x) ∈ Cλ+1 (∂Ω) , then the solution of problem (30) exists, is unique and

belongs to the class Cλ+1(Ω̄) (see e.g. [6]).

Further, since v(x) = u(x)− w(x) , then for all x ∈ Ω̄ :

∂

∂ℓa
v(x) =

∂

∂ℓa
u(x)−

∂

∂ℓa
w(x) =

∂

∂ℓa
u(x) + IS

∂

∂ℓa
u(x)

−IS
∂

∂ℓa
v(x)− IS

∂

∂ℓa
w(x)−

∂

∂ℓa
w(x).

Hence

∂

∂ℓa
v(x) + IS

∂

∂ℓa
v(x) = (1 + IS)

∂

∂ℓa
u(x)− (1 + IS)

∂

∂ℓa
w(x).
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Due to (16), we receive

∂

∂ℓa
v(x) + IS

∂

∂ℓa
v(x) = 2

∂v(x)

∂ℓb
.

Further, if x ∈ ∂Ω−, then x∗ ∈ ∂Ω+, and therefore, from the boundary condition

(1) for the function (1 + IS)
∂
∂ℓa
u(x) we get

(1 + IS)
∂

∂ℓa
u(x) =

{

g0(x), x ∈ ∂Ω+,

g0(x
∗), x ∈ ∂Ω−

.

By ϕ(x) we denote a boundary value of the function (1 + IS)
∂

∂ℓa
w(x). Then for

x ∈ ∂Ω+ we obtain

ϕ(x) =
∂

∂ℓa
w(x) +

∂

∂ℓa
w(x∗)

∣

∣

∣

∣

∂Ω+

and if x ∈ ∂Ω− , then x∗ ∈ ∂Ω+ and

ϕ(x) =
∂

∂ℓa
w(x) +

∂

∂ℓa
w(x∗)

∣

∣

∣

∣

∂Ω−

=
∂

∂ℓa
w(x∗) +

∂

∂ℓa
w(x)

∣

∣

∣

∣

x∗∈∂Ω+

= ϕ(x∗).

Let

2g̃1(x) =

{

g1(x)− ϕ(x), x ∈ ∂Ω+,

g1(x
∗)− ϕ(x∗), x ∈ ∂Ω−

.

Then the function v(x) satisfies conditions of the following problem

∆v(x) = 0, x ∈ Ω;
∂v

∂ℓb
(x)

∣

∣

∣

∣

∂Ω
= g̃1 (x) . (31)

We investigate smoothness of the function g̃1 (x). If g1 (x) ∈ C (∂Ω+), then by

the matching condition (7) the function g̃1 (x) ∈ C (∂Ω). Further, since b ∈ Ω ,

then by Theorem 1 for the existence of the solution of problem (31) it is necessary

and sufficient that the following condition holds

∫

∂Ω

1 − |b|2

|b− y|n
g̃1 (y) dsy = 0. (32)

Using presentation of the function g̃1(x), we find
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∫

∂Ω

1 − |b|2

|b− y|n
g̃1 (y) dsy =

∫

∂Ω+

1 − |b|2

|b− y|n
[g1(y)− ϕ(y)] dsy

+

∫

∂Ω−

1 − |b|2

|b− y|n
[g1(y

∗)− ϕ(y∗)] dsy.

After changing variables, the last integral can be written in the following form

∫

∂Ω−

1 − |b|2

|b− y|n
[g1(y

∗)− ϕ(y∗)] dsy =

∫

∂Ω+

1 − |b|2

|b− y∗|n
[g1(y)− ϕ(y)] dsy.

On the other hand by definition

bj =
(1 + αj)

2
aj =

{

aj , αj = 1

0, αj = −1
.

Thus,

(bj − yj)
2 =

{

(aj − yj)
2, αj = 1

y2
j , αj = −1

,

(bj − αjyj)
2 =

{

(aj − yj)
2, αj = 1

(αjyj)
2 = y2

j , αj = −1
.

Consequently, |b− y|n = |b− y∗|n. Therefore, (32) can be rewritten as

∫

∂Ω+

1 − |b|2

|b− y|n
[g1(y)− ϕ(y)] dsy = 0,

it means that

∫

∂Ω+

1 − |b|2

|b− y|n
g1(y)dsy =

∫

∂Ω+

1 − |b|2

|b− y|n
ϕ(y)dsy. (33)

Therefore, we have proved the following statement.

Theorem 5.1. Let |a| < 1, g0 (x) ∈ C
λ+1

(∂Ω+) , g1 (x) ∈ C
λ
(∂Ω+) , 0 < λ <

1. Then Problem 1.1 is solvable if and only if condition (33) holds. If a solution

exists, then it is unique up to a constant term.
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Example 5.2. Suppose that in Problem 1.1: g0(x) ≡ 1. Then w(x) = 1, wxj
(x) =

0 and condition (33) can be rewritten in the form

∫

∂Ω+

1 − |b|2

|b− y|n
g1(y)dsy = 0.

We turn to study the existence of a solution of Problem 1.2. The following state-

ment is true.

Theorem 5.3. Let |a| < 1, g0 (x) ∈ C
λ+1

(∂Ω+) , g1 (x) ∈ C
λ

(∂Ω+) , 0 < λ <

1. Then a solution of Problem 1.2 exists and is unique.

Proof. Let u(x) be a solution of Problem 1.2, and functions v(x) and w(x) are

defined by (14). From (3) it follows that

v(x)|∂Ω+
=
u(x) + u(x∗)

2

∣

∣

∣

∣

∂Ω+

=
1

2
g0(x),

v(x)
∣

∣

∂Ω−
=
u(x∗) + u(x)

2

∣

∣

∣

∣

x∗∈∂Ω+

=
1

2
g0(x

∗).

We introduce the function

2g̃0(x) =

{

g0(x), x ∈ ∂Ω+,

g0(x
∗), x ∈ ∂Ω−

.

Then w(x) |∂Ω = g̃0 (x). If the function g0 (x) is smooth in the domain ∂Ω+,

then by the matching conditions (8) - (9) the function g̃0 (x) will have the same

smoothness in the domain ∂Ω. Therefore, for the function v(x) we get the follow-

ing Dirichlet problem

∆v(x) = 0, x ∈ Ω; v(x) |∂Ω = g̃0(x). (34)

If g̃0 (x) ∈ Cλ+1 (∂Ω) , then a solution of problem (34) exists, is unique and

belongs to the class Cλ+1
(

Ω̄
)

. Further, since w(x) = u(x)− v(x), then for any

x ∈ Ω̄ we have

∂

∂ℓa
w(x)− IS

∂

∂ℓa
w(x) = (1 − IS)

∂

∂ℓa
u(x)− (1 − IS)

∂

∂ℓa
v(x).

Due to (19), we obtain

(1 + IS)
∂

∂ℓa
w(x) = 2

∂w(x)

∂ℓb
.
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Further, from the boundary condition (3) we get

(1 − IS)
∂

∂ℓa
u(x) =

{

g1(x), x ∈ ∂Ω+,

−g1(x
∗), x ∈ ∂Ω−

.

If by ψ(x) we denote a boundary value of the function (1 − IS)
∂

∂ℓa
v(x), then for

x ∈ ∂Ω+ we find

ψ(x) =
∂

∂ℓa
v(x)−

∂

∂ℓa
v(x∗)

∣

∣

∣

∣

∂Ω+

and if x ∈ ∂Ω− , then x∗ ∈ ∂Ω+, therefore

ψ(x) =
∂

∂ℓa
v(x) +

∂

∂ℓa
v(x∗)

∣

∣

∣

∣

∂Ω−

= −

[

∂

∂ℓa
v(x∗)−

∂

∂ℓa
v(x)

]∣

∣

∣

∣

x∗∈∂Ω+

= −ψ(x∗).

Let

2g̃1(x) =

{

g1(x)− ψ(x), x ∈ ∂Ω+,

−g1(x
∗) + ψ(x∗), x ∈ ∂Ω−

.

Then, the function w(x) satisfies conditions of the problem

∆w(x) = 0, x ∈ Ω;
∂w

∂ℓb
(x)

∣

∣

∣

∣

∂Ω
= g̃1 (x) . (35)

If g1 (x) ∈ C (∂Ω+), then by the matching condition (9) the function g̃1 (x) ∈
C (∂Ω). Further, since b ∈ Ω, then by Theorem 3.1 for the existence of the

solution of problem (35) it is necessary and sufficient that the following condition

holds
∫

∂Ω

1 − |b|2

|b− y|n
g̃1 (y) dsy = 0. (36)

By using presentation of the function g̃1(x), we find

∫

∂Ω

1 − |b|2

|b− y|n
g̃1 (y) dsy =

∫

∂Ω+

1 − |b|2

|b− y|n
[g1(y)− ψ(y)] dsy

+

∫

∂Ω−

1 − |b|2

|b− y|n
[−g1(y

∗) + ψ(y∗)] dsy.
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After changing the variables the last integral can be written in the following form

∫

∂Ω−

1 − |b|2

|b− y|n
[−g1(y

∗) + ψ(y∗)] dsy =

∫

∂Ω+

1 − |b|2

|b− y∗|n
[−g1(y) + ψ(y)] dsy.

Then condition (32) can be rewritten as follows

∫

∂Ω

1 − |b|2

|b− y|n
g̃1 (y)dsy =

∫

∂Ω+

[

1 − |b|2

|b− y|n
−

1 − |b|2

|b− y∗|n

]

[g1(y)− ψ(y)] dsy = 0.

Since |b − y|n = |b − y∗|n, then this condition always holds. The solution of

problem (35) is unique up to the constant value C. Since w(x) = −w(x∗), then

C = 0 .

Now we consider a case when solvability condition of Problem 1.1 can be sim-

plified. The following statement is true.

Theorem 5.4. Suppose that conditions of Theorem 5.1 hold and the coefficients

aj vanish, if in the mapping Sx = x∗ the parameters αj take values −1. Then

solvability condition of Problem 1.1 can be rewritten in the following form

∫

∂Ω+

1 − |a|2

|a− y|n
g1 (y)dsy = 0. (37)

Proof. Before, in the proof of Theorem 5.3 we have proved that if αj = 1, then the

equality bj = aj holds, and if αj = −1, then bj = 0. Assume that in the mapping

Sx = x∗ for some index j0 we have the equality αj0
= −1. Then by condition of

the theorem aj0
= 0, and therefore bj0

= 0 = aj0
. Consequently, when conditions

of the theorem hold we have |b − y|n = |a − y|n = |a − y∗|n. Moreover, in this

case from equality (18) it follows that

ϕ(x) =
∂

∂ℓ
w(x) +

∂

∂ℓ
w(x∗) = −

n
∑

i=1

(1 − αi) aiwxi
(x) = 0.

Then the solvability condition of Problem 1.1 can be rewritten as (37).

Corollary 5.5. If a = 0, then solvability condition of Problem 1.1 can be rewritten

in the following form
∫

∂Ω+

g1 (x)dsx = 0.

This condition (the case a = 0) has been obtained in [1].
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Example 5.6. Suppose that in Problem 1.1 g0(x) ≡ 1 and x∗ = −x. Thenw(x) =
1, ϕ(x) = 0 and bj = 0. In this case by Theorem 5.1 it is possible to rewrite

condition (33) as follows
∫

∂Ω+

g1(y)dsy = 0.
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