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Abstract. The purpose of this paper is to use a modified proximal point algorithm for
solving variational inclusion problem in real Hilbert spaces. It is proven that the sequence
generated by the proposed iterative algorithm converges strongly to the common solution
of the convex minimization and variational inclusion problems.
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1 Introduction

Let H be a real Hilbert space and K be a nonempty, closed, and convex subset of
H . Consider the following convex minimization problem:

Minimize f(x)
subject to x ∈ K,

(1)

where f : K → R is a real-valued convex function. The set of all minimizers of
g on H is denoted by argminy∈K f(y). A successful and powerful tool for solving
problem (1) is the well-known proximal point algorithm (shortly, the PPA) which
was initiated by Martinet [14] in 1970 and later studied by Rockafellar [18] in
1976. Let H be a real Hilbert space. The PPA is defined as follows: x1 ∈ H,

xn+1 = argminy∈H
[
f(y) +

1
2λn
‖xn − y‖2

]
,

(2)

where λn > 0 for all n ≥ 1. In [18] Rockafellar proved that the sequence {xn}
given by (2) converges weakly to a minimizer of f . In the recent years, the problem
of finding a solution of problem (1) by using a modified proximal point algorithm
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in real Hilbert spaces has been intensively studied by many authors; see, for ex-
ample, [8, 10, 11, 19, 21] and the references therein.

Let A : H → H be a single-valued nonlinear mapping and B : H → 2H be a
set-valued mapping. The variational inclusion problem is as follows:
Find x ∈ H such that

0 ∈ B(x) +A(x). (3)

We denote the set of solutions of this problem by (A + B)−1(0). If A = 0, then
problem (3) becomes the inclusion problem introduced by Rockafellar [18]. In-
clusions of the form specified by (3) arise in numerous problems of fundamental
importance in mathematical optimization, either directly or through an appropriate
reformulation. In general, equations of inclusion monotone type (3) are nonlinear
and there is no known method to find closed form solutions for them. Conse-
quently, methods of approximating solutions of such equations are of interest. A
popular method for solving problem (3) is the well-known forward-backward split-
ting method introduced by Passty [16] and Lions and Mercier [12].The method is
formulated as

xn+1 = (I − λnB)−1(I − λnA)xn, λn > 0, (4)

under the condition that D(B) ⊂ D(A). It was shown, see for example [4], that
weak convergence of (4) requires quite restrictive assumptions on A and B, such
that the inverse ofA is strongly monotone orB is Lipschitz continuous and mono-
tone and the operator A+B is strongly monotone on D(B). Hence, the modifica-
tion is necessary in order to guarantee the strong convergence of forward-backward
splitting method (see, for example, [7, 9, 22–24] and the references contained in
them). In recent years, monotone operators have received a lot of attention for
treating zero points of monotone operators; see [4,8–12,16,24] and the references
therein. Very recently, Boikanyo [2] used proximal point algorithm for finding zero
points of the sum of two operators such that the sequence of error terms is square
summable in norm. He proved the following theorem.

Theorem 1.1. Let H be a real Hilbert space and let f : H → H be a k-

contraction with k <
1
2
. Assume that A : D(A) = H → H is a β-inverse

strongly operator and B : D(B) ⊂ H → H is a maximal monotone operator
with S := (A+B)−1(0) 6= ∅. For x0 ∈ H, let (xn) be a sequence generated by{

x0 ∈ H,
xn+1 = αnf(xn) + γnxn + δnJ

B
rn(xn − rnAxn)

(5)
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with αn ∈ (0, 1), γn ∈ (−3
2 , 1), and δn ∈ (0, 3

2) satisfying αn + γn + δn = 1,
rn ∈ (0, β], and (en) is a sequence of errors in H. Then, (xn) converges strongly
to the unique fixed point z of PSf, provided that

(i) lim
n→∞

αn = 0 and
∞∑
n=0

αn =∞.

(ii) lim inf rn > 0,
(iii) 0 < lim inf δn < lim sup δn < 3

2 ,

(iv) ‖en‖ ≤ γn‖xn − δnJBrn(xn − rnAxn)‖ with
∞∑
n=0

γn
2 <∞.

Motivated by Boikanyo [2] and Rockafellar [18], we construct an iterative al-
gorithm and strong convergence theorems for finding a point in the intersection
of the set of solution of variational inclusion problem and the set of solution of
convex minimization problem is established. Finally, our method of proof is of
independent interest.

2 Preliminaries

In this section, we give some preliminaries, definitions and results which will be
needed in the sequel.

LetA : K → H be a single-valued nonlinear mapping andA is α-inverse strongly
monotone if there exists a constant α > 0 such that

〈Ax−Ay, x− y〉 ≥ α‖Ax−Ay‖2, ∀ x, y ∈ K.

It is immediate that if A is α- inverse strongly monotone, then A is monotone and
Lipschitz continuous.

The demiclosedness of a nonlinear operator T usually plays an important role
in dealing with the convergence of fixed point iterative algorithms.

Lemma 2.1. [3] Let H be a real Hilbert space H and T : H → H be a nonex-
pansive mapping such that Fix(T ) 6= ∅. Then I − T is demiclosed; that is,

{xn} ⊂ H, xn ⇀ x ∈ K and (I − T )xn → y implies that (I − T )x = y.

Lemma 2.2. [20] Let H be a real Hilbert space and A : H → H be an α-
inverse strongly monotone mapping. Then, I − θA is nonexpansive mapping for
all x, y ∈ H and θ ∈ [0, 2α].
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Lemma 2.3 (Chidume, [5]). Let H be a real Hilbert space. Then, for every x, y ∈
H, and every λ ∈ [0, 1], the following holds:

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, x+ y〉.

Lemma 2.4 (Xu, [23]). Assume that {βn} is a sequence of nonnegative real num-
bers such that βn+1 ≤ (1 − εn)βn + γn for all n ≥ 0, where {εn} is a sequence
in (0, 1) and {γn} is a sequence in R such that

(a)

∞∑
n=0

εn =∞, (b) lim sup
n→∞

γn
εn
≤ 0 or

∞∑
n=0

|γn| <∞. Then lim
n→∞

βn = 0.

For every λ > 0, the Moreau-Yosida resolvent of f , Jfλ is defined by :

Jfλx = argminu∈H
[
f(u) +

1
2λ
‖x− u‖2

]
,

for all x ∈ H. It was shown in [8] that the set of fixed points of the resolvent
associated to F coincides with the set of minimizers of f. Also, the resolvent Jfλ
of f is nonexpansive for all λ > 0.

Lemma 2.5. (Miyadera [15]) Let f : K → (−∞, +∞) be a proper, lower semi-
continuous and convex function. For every r > 0 and µ > 0, the following holds:

Jfr x = Jfµ (
µ

r
x+ (1− µ

r
)Jfr x).

Lemma 2.6 (Sub-differential inequality, Ambrosio et al. [1]). Let f : H →
(−∞, +∞) be a proper, lower semicontinuous and convex function. Then, for
every x, y ∈ H and λ > 0, the following sub-differential inequality holds:

1
λ
‖Jfλx− y‖

2 − 1
λ
‖x− y‖2 +

1
λ
‖x− Jfλx‖

2 + f(Jfλx) ≤ f(y). (6)

Let a set-valued mapping B : H → 2H be a maximal monotone. We define a
resolvent operator JBλ generated by B and λ as follows:

JBλ = (I + λB)−1(x) ∀x ∈ H,

where λ is a positive number. It is easily to see that the resolvent operator JBλ
is single-valued, nonexpansive and 1-inverse strongly monotone and moreover, a
solution of problem (3) is a fixed point of the operator JBλ (I − λA) for all λ > 0
(see, for example, [6]).

Lemma 2.7. [12] Let B : H → 2H be a maximal monotone mapping and A :
H → H be a Lipschitz and continuous monotone mapping. Then, the mapping
B +A : H → 2H is maximal monotone.
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3 Main Result

We are in a position to state and investigate the new proximal iterative method for
finding a common element of the set of minimizers of a convex function and the set
of solutions of variational inclusion with set-valued maximal monotone mapping
and inverse strongly monotone mapping in real Hilbert spaces.

Theorem 3.1. Let K be a nonempty closed convex subset of a real Hilbert space
H. Let g : K → (−∞, +∞] be a proper, lower semi-continuous and convex
function and A be an α-inverse strongly monotone operator of K into H. Let
f : K → K be a b-contraction mapping and B be a maximal monotone operator
onH such that Γ := argminu∈K g(u)∩(A+B)−1(0) is non-empty and the domain
of B is included in K. Let {xn} be a sequence defined as follows:

x0 ∈ K,

un = argminu∈K
[
g(u) +

1
2λn
‖u− xn‖2

]
,

xn+1 = αnf(xn) + (1− αn)JBθn(un − θnAun),

(7)

where {αn}, {λn}, and {θn} be sequences in (0, 1) and λn ≥ λ > 0 for all n ≥ 1
and some λ satisfying the following conditions:

(i) lim
n→∞

αn = 0 and
∞∑
n=0

αn =∞,

(ii) θn ∈ [a, b] ⊂
(
0, min{1, 2α}

)
.

Then, the sequence {xn} generated by (7) converges strongly to p ∈ Γ, which is
the unique solution of the variational inequality problem:

〈p− f(p), p− q〉 ≤ 0, ∀q ∈ Γ. (8)

Proof. By using property of (I − f) and since Γ is closed convex, the variational
inequality (8) has a unique solution in Γ. We denote by p the unique solution of
(8). Using (7) and properties of g,we have g(p) ≤ g(u) for all u ∈ K. This implies
that

g(p) +
1

2λn
‖p− p‖2 ≤ g(u) + 1

2λn
‖u− p‖2

and hence Jgλnp = p for all n ≥ 1, where Jgλn is the Moreau-Yosida resolvent of g
in K. Therefore,

‖un − p‖ = ‖Jgλnxn − p‖ ≤ ‖xn − p‖.
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From (7), the fact that p = JBθn(I − θnA)p and Lemma 2.2, we have

‖JBθn(I − θnA)un − p‖ ≤ ‖un − p‖ ≤ ‖xn − p‖, ∀n ≥ 0. (9)

Hence,

‖xn+1 − p‖ = ‖αnf(xn) + (1− αn)JBθn(I − θnA)un − p‖

≤ αn‖f(xn)− f(p)‖+ (1− αn)‖JBθn(I − θnA)un
−p‖+ αn‖f(p)− p‖

≤ (1− αn(1− b))‖xn − p‖+ αn‖f(p)− p‖

≤ max {‖xn − p‖,
‖f(p)− p‖

1− b
}.

By induction on n, we obtain that

‖xn − p‖ ≤ max {‖x0 − p‖,
‖f(p)− p‖

1− b
}, n ≥ 1.

Hence {xn} is bounded. Now, we prove that xn → p.
We divide the proof into two cases.
Case 1. Assume that there is n0 ∈ N such that {‖xn − x∗‖} is decreasing for all
n ≥ n0. Since {‖xn−x∗‖} is monotonic and bounded, {‖xn−x∗‖} is convergent.
Clearly, we have

lim
n→∞

(
‖xn − p‖2 − ‖xn+1 − p‖2

)
= 0. (10)

By using Lemma 2.6 and since g(p) ≤ g(un), we get

‖xn − un‖2 ≤ ‖xn − p‖2 − ‖un − p‖2. (11)

Therefore, from (7), inequality (11) and convexity of ‖.‖2, we get that

‖xn+1 − p‖2 = ‖αnf(xn) + (1− αn)JBθn(I − θnA)un − p‖
2

≤ (1− αn)‖JBθn(I − θnA)un − p‖
2 + αn‖ f(xn)− p‖2

≤ (1− αn)‖un − p‖2 + αn‖ f(xn)− p‖2

≤ (1− αn)(‖xn − p‖2 − ‖xn − un‖2) + αn‖ f(xn)− p‖2.

Hence,

(1− αn)‖xn − un‖2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + αn‖ f(xn)− p‖2. (12)
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It then implies from (10) and αn → 0 that

lim
n→∞

‖xn − un‖2 = 0. (13)

From (7) and Lemma 2.2, it follows that

‖xn+1 − p‖2 = ‖αn(f(xn)− p) + (1− αn)(JBθn(I − θnA)un − p)‖
2

≤ αn‖f(xn)− p‖2 + (1− αn)‖JBθn(I − θnA)un − p‖
2

= αn‖f(xn)− p‖2 + (1− αn)‖JBθn(I − θnA)un − J
B
θn(I − θnA)p‖

2

≤ αn‖f(xn)− p‖2 + (1− αn)
[
‖un − p‖2 + a(b− 2α)‖Aun −Ap‖2

]
.

Therefore, we have

(1− αn)a(2α− b)‖Aun −Ap‖2 ≤ ‖xn − p‖2

−‖xn+1 − p‖2 + αn‖f(xn)− p‖2.

Since, αn → 0 as n→∞, inequality (10) and {xn} is bounded, we obtain

lim
n→∞

‖Aun −Ap‖2 = 0. (14)

Since JBθn is 1-inverse strongly monotone and (7), we have

‖JBθn(I − θnA)un − p‖
2

≤ 〈JBθn(I − θnA)un − J
B
θn(I − θnA)p, (I − θnA)un − (I − θnA)p〉

=
1
2

[
‖(I − θnA)un − (I − θnA)p‖2 + ‖Bθn(I − θnA)un − p‖

2

−‖(I − θnA)un − (I − θnA)p− (JBθn(I − θnA)un − p)‖
2
]

≤ 1
2

[
‖un − p‖2 + ‖JBθn(I − θnA)un − p‖

2 − ‖un − JBθn(I − θnA)un‖
2

+2θn〈JBθn(I − θnA)un − p,Aun −Ap〉 − θn
2‖Aun −Ap‖2

]
.

So, we obtain

‖JBθn(I − θnA)un − p‖
2

≤ ‖xn − p‖2 − ‖un − JBθn(I − θnA)un‖
2

+2θn〈JBθn(I − θnA)un − p,Aun −Ap〉 − θn
2‖Aun −Ap‖2,
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and thus

‖xn+1 − p‖2 = ‖αn(f(xn)− p) + (1− αn)(JBθn(I − θnA)un − p)‖
2

≤ αn‖f(xn)− p‖2 + (1− αn)‖JBθn(I − θnA)un − p‖
2

≤ αn‖f(xn)− p‖2 + ‖xn − p‖2 − (1− αn)‖un − JBθn(I − θnA)un‖
2

−(1− αn)θn2‖Aun −Ap‖2 + 2(1− αn)θn〈JBθn(I − θnA)un − p,Aun −Ap〉.

Since, αn → 0 as n→∞, from inequalities (10) and (14), we obtain

lim
n→∞

‖un − JBθn(I − θnA)un‖
2 = 0. (15)

Next, we prove that lim sup
n→+∞

〈p − f(p), p − xn〉 ≤ 0. Since H is a Hilbert space

and {xn} is bounded, there exists a subsequence {xnk
} of {xn} which converges

weakly to x∗ in K and

lim sup
n→+∞

〈p− f(p), p− xn〉 = lim
k→+∞

〈p− f(p), p− xnk
〉.

Using (7) and Lemma 2.5, we arrive at

‖xn − Jgλxn‖ ≤ ‖un − Jgλxn‖+ ‖un − xn‖
≤ ‖Jgλnxn − J

g
λxn‖+ ‖un − xn‖

≤ ‖un − xn‖+ ‖Jgλ
(λn − λ

λn
Jgλnxn +

λ

λn
xn

)
− Jgλxn‖

≤ ‖un − xn‖+ ‖
λn − λ
λn

Jgλnxn +
λ

λn
xn − xn‖

≤ ‖un − xn‖+
(

1− λ

λn

)
‖un − xn‖

≤
(

2− λ

λn

)
‖un − xn‖.

Hence,
lim
n→∞

‖xn − Jgλxn‖ = 0. (16)

Since Jgλ is single valued and nonexpansive, using (16) and Lemma 2.1, then
x∗ ∈ Fix(Jgλ) = argminu∈K g(u). Let us show x∗ ∈ (A + B)−1(0). Since A
be an α-inverse strongly monotone, A is Lipschitz continuous monotone map-
ping. It follows from Lemma 2.7 that B + A is maximal monotone. Let (v, u) ∈
G(B + A), i.e., u − Av ∈ B(v). We set zn := JBθn(un − θnAun). Since znk

=
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JBθnk
(unk

− θnk
Aunk

), we have unk
− θnk

unk
∈ (I + θnk

B)znk
, i.e.,

1
θnk

(unk
−

znk
− θnk

Aunk
) ∈ B(znk

). By maximal monotonicity of B +A, we have

〈v − znk
, u−Av − 1

θnk

(unk
− znk

− θnk
Aunk

)〉 ≥ 0

and so

〈v − znk
, u〉 ≥ 〈v − znk

, Av − 1
θnk

(unk
− znk

− θnk
Aunk

)〉

= 〈v − znk
, Av −Aznk

+Aznk
+

1
θnk

(unk
− znk

− θnk
Aunk

)〉

≥ 〈v − znk
, Aznk

−Aunk
〉+ 〈v − znk

,
1
θnk

(unk
− znk

)〉.

It follows from ‖zn − un‖ → 0, ‖Azn −Aun‖ → 0 and znk
converges weakly to

x∗, we get
lim

k→+∞
〈v − znk

, u〉 = 〈v − x∗, u〉 ≥ 0

and hence x∗ ∈ (A+B)−1(0). Therefore, x∗ ∈ (A+B)−1(0)∩argminu∈K g(u).
On other hand, the fact that p solves (8), we then have

lim sup
n→+∞

〈p− f(p), p− xn〉 = lim
k→+∞

〈p− f(p), p− xnk
〉

= 〈p− f(p), p− x∗〉 ≤ 0.

Finally, we show that xn → p. From (7) and Lemma 2.3, we get that

‖xn+1 − p‖2 = ‖αnf(xn) + (1− αn)JBθn(I − θnA)un − p‖
2

≤ ‖αn(f(xn)− f(p)) + (1− αn)(JBθn(I − θnA)un − p)‖
2

+2αn〈p− f(p), p− xn+1〉

≤
(
αn‖f(xn)− f(p)‖+ ‖(1− αn)(JBθn(I − θnA)un − p)‖

)2

+2αn〈p− f(p), p− xn+1〉

≤
(
αnb‖xn − p‖+ (1− αn)‖JBθn(I − θnA)un − p‖

)2

+2αn〈p− f(p), p− xn+1〉

≤
(
(1− αn(1− b))‖xn − p‖

)2
+ 2αn〈p− f(p), p− xn+1〉

≤ (1− αn(1− b))‖xn − p‖2 + 2αn〈p− f(p), p− xn+1〉.
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The conclusion that xn → p. follows from Lemma 2.4.
Case 2. The sequence {‖xn − p‖} is not eventually decreasing. Set Πn = ‖xn −
p‖2 and τ : N → N be a mapping for all n ≥ n0 (for some n0 large enough) by
τ(n) = max{k ∈ N : k ≤ n, Πk ≤ Πk+1}. We have τ is a non-decreasing
sequence such that τ(n) → ∞ as n → ∞ and Πτ(n) ≤ Πτ(n)+1 for n ≥ n0. By
following the same line of arguments as in Case 1, we can show that {xτ(n)}n≥1
and {yτ(n)}n≥1 are bounded in K and lim sup

τ(n)→+∞
〈p − f(p), p − xτ(n))〉 ≤ 0. We

have for all n ≥ n0,

0 ≤ ‖xτ(n)+1 − p‖2 − ‖xτ(n) − p‖2

≤ ατ(n)[−(1− b)‖xτ(n) − p‖2 + 2〈p− f(p), p− xτ(n)+1〉],

which implies that

‖xτ(n) − p‖2 ≤ 2
1− b

〈p− f(p), p− xτ(n)+1〉.

Then, we have
lim
n→∞

‖xτ(n) − p‖2 = 0.

Therefore,
lim
n→∞

Πτ(n) = lim
n→∞

Πτ(n)+1 = 0.

Furthermore, for all n ≥ n0, we have Πτ(n) ≤ Πτ(n)+1 if n 6= τ(n) (that is,
n > τ(n)); because Πj > Ψj+1 for τ(n) + 1 ≤ j ≤ n. As consequence, we have
for all n ≥ n0,

0 ≤ Πn ≤ max{Πτ(n), Πτ(n)+1} = Πτ(n)+1.

Hence, lim
n→∞

Πn = 0, that is {xn} converges strongly to p. This completes the
proof.

Now, we give some remarks on our results as follows:

(1) The proof methods of our result are very different from Boikanyo’s method [2]
for monotone inclusion problem. Further, we remove the following conditions:
(i) lim inf rn > 0,
(ii) 0 < lim inf δn < lim sup δn < 3

2 ,

(iii) ‖en‖ ≤ γn‖xn − δnJBrn(xn − rnAxn)‖ with
∞∑
n=0

γn
2 <∞ in [2].
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(2) Our results improve many recent results using proximal point algorithms for
solving variational inclusion problem (3) and convex minimization problem (1) in
real Hilbert spaces.

(3) Our results are applicable for finding a common solution of some nonlinear
problem, namely, equilibrium problem, composite optimization problem, inclu-
sion problem.
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