
e-Journal of Analysis and Applied Mathematics 2020(1) (2020), 40–52
DOI 10.2478/ejaam-2020-0004 © Sciendo 2020

Stability analysis for first-order nonlinear
differential equations with three-point boundary
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Abstract. In the present paper, we study a system of nonlinear differential equations with
three-point boundary conditions. The given original problem is reduced to the equiva-
lent integral equations using Green function. Several theorems are proved concerning the
existence and uniqueness of solutions to the boundary value problems for the first order
nonlinear system of ordinary differential equations with three-point boundary conditions.
The uniqueness theorem is proved by Banach fixed point principle, and the existence the-
orem is based on Schafer’s theorem. Then, we describe different types of Ulam stability:
Ulam-Hyers stability, generalized Ulam-Hyers stability. We discuss the stability results
providing suitable example.
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1 Introduction

Lately, stability theory for functional, differential, integral and integro-differential
equations has been intensively studied. The most frequent types of citations are
shown in the following examples [1, 2, 4]. Stability theory was first introduced
from a well-known question raised by S. M. Ulam at the Mathematics Club of
the University of Wisconsin in 1940: “When a solution of an equation differing
slightly from a given one must be somehow near to the solution of the given equa-
tion?” (see e.g., [7]). The first partial answer to Ulam’s question in the case of
Cauchy’s equation in Banach spaces was given by D.H.Hyers in 1941, and which
is obtained property is nowadays called the Ulam-Hyers stability (see for more de-
tail [8]). Afterwards, various generalizations of Ulam-Hyers stability are obtained.
We show this with the following examples: Ulam-Hyers-Rassias stability, gener-
alized Ulam–Hyers stability, generalized Ulam–Hyers-Rassias stability [3, 5, 6, 9,
11-16].
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In the past few years, the study of differential equations with nonlocal boundary
conditions has been an important field of mathematics, that has recently received
much attention of researchers; the reader is referred to [10, 17-31]. Stability prob-
lems for non-local boundary conditions have been newly studied by several authors
(see e.g., [32-35] and the references therein).

Here for the first time we investigate Ulam-Hyers stability for three-point bound-
ary value problems. The rest of this paper is organized as follows. In Section 2,
notations, problem statement, general definitions, remark and auxiliary lemmas
are given, which will be used in the proof of main results. In Section 3, we discuss
existence results for investigated boundary value problems. In Section 4, Ulam
stability analysis results are obtained. In Section 5, an example illustrates the ap-
plication for the Ulam-Hyers stability .

2 Problem statement and preliminaries

In this section, we give problem statement, general definitions, remark and lemmas
which are used throughout this paper. We denote by C([0, T ], Rn) the Banach
space of all continuous functions from [0, T ] into Rn with the norm

‖x‖ = max {|x(t)| : t ∈ [0, T ]} ,

where | · | is the norm in space Rn.
We concerned the existence, uniqueness and stability of the system of nonlinear

differential equations of the type

ẋ(t) = f(t, x(t)), t ∈ [0, T ], (1)

subject to three point boundary conditions

Ax(0) +Bx(t1) + Cx(T ) = d, (2)

where A,B,C are constant square matrices of order n such that detN 6= 0,
N = A + B + C, f : [0, T ] × Rn → Rn is a given function, d ∈ Rn is a
given vector and t1 satisfies the condition 0 < t1 < T .

Definition 2.1. For every ε > 0, the function satisfies y ∈ C1([0, T ], Rn)

|ẏ(t)− f(t, y(t))| ≤ ε, t ∈ [0, T ], (3)

where the function f is defined in (1). Let x ∈ C([0, T ], Rn) be a solution of the
problem (1)-(2). If there exists a nonzero positive constant k such that

|y(t)− x(t)| ≤ kε, t ∈ [0, T ],

then the problem (1)-(2) is said to be Ulam-Hyers stable.
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Definition 2.2. Let y ∈ C1([0, T ], Rn) satisfies the inequality in (3) and
x ∈ C([0, T ], Rn) is a solution of (1)-(2). If there is a function ϕf ∈ C(R+, R+)
with ϕf (0) = 0 satisfying

|y(t)− x(t)| ≤ ϕf (ε), t ∈ [0, T ],

then the problem (1)-(2) is said to be generalized Ulam-Hyers stable.

Remark 2.3. A function y ∈ C1([0, T ], Rn) is said to be a solution to (3) if and
only if we can find a function ϕ ∈ C([0, T ], Rn) (dependent on y ) such that

(i) |ϕ(t)| ≤ ε for all t ∈ [0, T ],

(ii) ẏ(t) = f(t, y(t)) + ϕ(t), t ∈ [0, T ].

For simplicity, we can look at the following problem:

Lemma 2.4. Suppose µ ∈ C([0, T ], Rn) and detN 6= 0. Then the unique solution
of the following problem

ẋ(t) = µ(t), t ∈ [0, T ], (4)

with three-point boundary conditions

Ax(0) +Bx(t1) + Cx(T ) = d, (5)

is given by

x(t) = D +

T∫
0

G(t, τ)µ(τ)dτ, (6)

where

D = N−1d, G(t, τ) =

{
G1(t, τ), t ∈ [0, t1],
G2(t, τ), t ∈ (t1, T ],

such that

G1(t, τ) =


N−1A, 0 ≤ τ ≤ t,
−N−1(B + C), t < τ ≤ t1,
−N−1C, t1 < τ ≤ T,

and

G2(t, τ) =


N−1A, 0 ≤ τ ≤ t1,
N−1(A+B), t1 < τ ≤ t,
−N−1C, t < τ ≤ T.
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Proof. If function x = x(·) is a solution of the differential equation (1), then for
t ∈ (0, T )

x(t) = x0 +

t∫
0

µ(τ)dτ, (7)

where x0 is an arbitrary constant vector. Now we define x0 so that, the function in
equality (7) satisfies condition (5)

x0 = N−1d−N−1B

t1∫
0

µ(t)dt−N−1C

T∫
0

µ(t)dt. (8)

Now in (7) we take into account the value x0 determined from the equality (8) and
yield

x(t) = N−1d−N−1B

t1∫
0

µ(t)dt−N−1C

T∫
0

µ(t)dt+

t∫
0

µ(τ)dτ. (9)

Suppose that, t ∈ [0, t1]. Then we can write the equality (9) as follows:

x(t) = N−1d−N−1B

(
t∫

0
µ(τ)dτ +

t1∫
t

µ(τ)dτ

)

−N−1C

(
t∫

0
µ(τ)dτ +

t1∫
t

µ(τ)dτ

)
−N−1C

T∫
t1

µ(t)dt+
t∫

0
µ(τ)dτ.

We group similar terms and then simplify:

x(t) = N−1d+
(
E −N−1B −N−1C

) t∫
0

µ(τ)dτ

−
(
N−1B +N−1C

) t1∫
t

µ(τ)dτ,

−N−1C

T∫
t1

µ(t)dt = N−1d+N−1A

t∫
0

µ(τ)dτ

−N−1 (B + C)

t1∫
t

µ(τ)dτ −N−1C

T∫
t1

y(t)dt, (10)
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where E is an identity matrix. Let us define new function as follows:

G1(t, τ) =


N−1A, 0 ≤ τ ≤ t,
−N−1(B + C), t < τ ≤ t1,
−N−1C, t1 < τ ≤ T.

Equality (10) can be rewritten as integral equation (11), this implies that,

x(t) = N−1d+

T∫
0

G1(t, τ)µ(τ)dτ. (11)

Now assume that, t ∈ (t1, T ]. Then we can write the equality (9) as follows:

x(t) = N−1d−N−1B

t1∫
0

µ(t)dt−N−1C

t1∫
0

µ(t)dt

−N−1C

 t∫
t1

µ(τ)dτ +

T∫
t

µ(τ)dτ

+

t1∫
0

µ(t)dt+

t∫
t1

µ(τ)dτ

= N−1d+
(
E −N−1B −N−1C

) t1∫
0

µ(t)dt+
(
E −N−1C

) t∫
t1

µ(τ)dτ

−N−1C

T∫
t

µ(τ)dτ = N−1d+N−1A

t1∫
0

µ(t)dt

N−1 (A+B)

t∫
t1

µ(τ)dτ −N−1C

T∫
t

µ(τ)dτ.

We introduce a new function as follows:

G2(t, τ) =


N−1A, 0 ≤ τ ≤ t1,
N−1(A+B), t1 < τ ≤ t,
−N−1C, t < τ ≤ T.

Hence, if t ∈ (t1, T ], then we can write the equality (9) as follows:

x(t) = N−1d+

T∫
0

G2(t, τ)µ(τ)dτ.
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Thus, the solution of the boundary value problem (4)-(5) can be shown as follows:

x(t) = D +

T∫
0

G(t, τ)µ(τ)dτ.

We showed the validity of (6). Proof is completed.

Lemma 2.5. Assume that f ∈ C([0, T ], Rn). Then the function x(t) is a solution
of the boundary value problem (1)-(2) if and only if x(t) is a solution of the integral
equation

x(t) = D +

T∫
0

G(t, τ)f(τ, x(τ))dτ. (12)

Proof. Let x(t) be a solution of the boundary value problem (1)-(2). This lemma
can be derived by a similar argument to Lemma 2.4. By checking directly we
make sure that the solution of integral equation (12) satisfies the boundary value
problem (1)-(2). Lemma 2.5 is proved.

3 Existence results

Let P be an operator such that, P : C([0, T ], Rn)→ C([0, T ], Rn) as

Px(t) = D +

T∫
0

G(t, τ)f(τ, x(τ))dτ.

Obviously, the problem (1)-(2) is equivalent to the fixed point problem x = Px.
So, the problem (1)-(2) has a solution if and only if the operator P has a fixed point.
In Lemma 2.4, we use the most basic fixed point theorem named the contraction
mapping principle and it uses the assumption:

(H1) There exists a continuous function M(t) ≥ 0 such that

|f(t, x)− f(t, y)| ≤M(t) |x− y|

for each t ∈ [0, T ] and all x, y ∈ Rn.

Theorem 3.1. Assume that, the assumption (H1) holds, and

L = TSM < 1, (13)



46 K. E. Ismayilova

then the boundary-value problem (1)-(2) has a unique solution on [0, T ], where

M = max
[0,T ]

M(t),

S = max
[0,T ]×[0,T ]

‖G(t, τ)‖ .

Proof. Setting max
[0,T ]
|f(t, 0)| = Mf and choosing r ≥ ‖D‖+MfTS

1−L we show that

PBr ⊂ Br where

Br = {x ∈ C([0, T ], Rn) : ‖x‖ ≤ r} .

For x ∈ Br, we have

‖Px(t)‖ ≤ ‖D‖+
T∫

0

|G(t, τ)| (|f(τ, x(τ))− f(τ, 0)|+ |f(τ, 0)|) dτ

≤ ‖D‖+ S

T∫
0

(M |x|+Mf ) dt ≤ ‖D‖

+SMrT +MfTS ≤
‖D‖+MfTS

1− L
≤ r.

Now for any x, y ∈ Br we have

|Px− Py| ≤
T∫

0

|G(t, τ) (f(τ, x(τ))− f(τ, y(τ))|dτ

≤
T∫

0

|G(t, τ)| |f(τ, x(τ))− f(τ, y(τ))| dτ

≤ S
T∫

0

M(t) |x(t)− y(t)| dt ≤SMT max
[0,T ]
|x(t)− y(t)| ≤ SMT ‖x− y‖

or
‖Px− Py‖ ≤ L ‖x− y‖ .

It is seen that, P is contraction by condition (13). So, the boundary-value problem
(1)-(2) has a unique solution.
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Theorem 3.2. (Schafer’s fixed point theorem). Let X be a Banach space.
Assume that, G : X → X is a completely continuous operator and the set
ρ = {x ∈ X|x = βGx, 0 < β < 1} is bounded. Then G has a fixed point in X .

Now we apply Schafer’s fixed point theorem and it uses the following assump-
tion:

(H2) The function f : [0, T ]×Rn → Rn is continuous.

Theorem 3.3. Assume that there exists ρ ∈ C ([0, T ], R+) such that |f(t, x(t))| ≤
ρ(t),∀t ∈ [0, T ], x ∈ C ([0, T ], Rn) with sup

t∈[0,T ]
|ρ(t)| = ‖ρ‖. Then the boundary

value problem (1)-(2) has at least one solution on [0, T ] .

Proof. Since f is continuous, the operator P is continuous. Let φ ∈ C([0, T ], Rn)
be bounded subset. Then ∀x ∈ φ together with the given assumption |f(t, x(t))| ≤
ρ(t), we get

|P (x)(t)| ≤ sup
t∈[0,T ]

D +

T∫
0

|G(t, τ)| |f(τ, x(τ))| dτ

 .

Hence,
|P (x)(t)| ≤ ‖D‖+ STρ.

Thus,
‖P (x)(t)‖ ≤ ‖D‖+ STρ = l.

This shows that, P is bounded. Now for 0 < τ1 < τ2 < T, we have

|P (x)(τ2)− P (x)(τ1)| ≤ ‖ρ‖ (τ2 − τ1)

which tends to zero as τ2 → τ1. We conclude that the mappingP : C([0, T ], Rn)→
C([0, T ], Rn) is completely continuous by Arzela-Ascoli theorem. We show that
a set Ω = {x ∈ C([0, T ], Rn) : x = λP (x), for some 0 < λ < 1} is bounded.
Assume that, x = λP (x) for some 0 < λ < 1. Then for each t ∈ [0, T ], we can
write

x(t) = λD + λ

T∫
0

G(t, τ)f(τ, x(τ))dτ.

From here
‖x‖ ≤ ‖D‖+ S ‖ρ‖T.

Therefore, the set Ω is bounded. Since all conditions of Theorem 3.2 are satisfied,
P has at least one fixed point. So, there exists at least one solution for the problem
(1)-(2) on [0, T ].
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4 Ulam stability analysis results

Lemma 4.1. For every ε > 0, the function y ∈ C1([0, T ], Rn) satisfies the in-
equality

|ẏ(t)− f(t, y(t))| ≤ ε,

then y is a solution of the inequality

|y(t)− Py(t)| ≤ STε. (14)

Proof. From Remark 2.3 (ii) and Lemma 2.5, we have

y(t) = D +

T∫
0

G(t, τ) (f(τ, y(τ)) + ϕ(τ)) dτ.

Then by Remark 2.1 (i), we obtain

y(t)− Py(t) =
T∫

0

G(t, τ) (f(τ, y(τ)) + ϕ(τ)) dτ

−
T∫

0

G(t, τ)f(τ, y(τ))dτ,

|y(t)− Py(t)| ≤ S
T∫

0

|ϕ(τ)| dτ ≤ STε.

Clearly, the inequality (14) is satisfied. This proves our statement.

Theorem 4.2. If the condition (H1) is satisfied and detN 6= 0 holds, then the
problem (1)-(2) is Ulam-Hyers stable.

Proof.

|y(t)− x(t)| =

∣∣∣∣∣∣y(t)−
T∫

0

G(t, τ)f(τ, x(τ))dτ

∣∣∣∣∣∣
= |y(t)− Py(t) + Py(t)− Px(t)| ≤ |y(t)− Py(t)|

+

∣∣∣∣∣∣
T∫

0

G(t, τ) (f(τ, y(τ))− f(τ, x(τ))) dτ

∣∣∣∣∣∣



Differential equations with three-point boundary conditions 49

≤ STε+ SMT ‖y(t)− x(t)‖ ,

(1− SMT ) ‖y − x‖ ≤ STε,

‖y − x‖ ≤ STε

1− SMT
.

Obviously, the problem (1)-(2) is Ulam-Hyers stable. So, by setting
ϕf (ε) = STε

1−SMT , ϕf (0) = 0 , problem (1)-(2) is generalized Ulam-Hyers sta-
ble. The proof is completed.

5 Example

Consider the following system of differential equation{
ẋ1 = sinαx2,

ẋ2 = β|x1|
1+t2 ,

subject to

x1(0) + x2(0)− x2

(
1
2

)
= 1, − x1

(
1
2

)
+ x1(1) + x2(1) = 0.

Obviously,

A =

(
1 1
0 0

)
, B =

(
0 −1
−1 0

)
, C =

(
0 0
1 1

)
,

A+B + C =

(
1 0
0 1

)
.

For t ∈
[
0, 1

2

]
, we obtain

G1(t, τ) =



(
1 1
0 0

)
, 0 ≤ τ ≤ t,(

0 1
0 −1

)
, t < τ ≤ 1

2 ,(
0 0
−1 −1

)
, 1

2 < τ ≤ 1
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and for t ∈
(1

2 , 1
]

G2(t, τ) =



(
1 1
0 0

)
, 0 ≤ τ ≤ 1

2 ,(
1 0
−1 0

)
, 1

2 < τ ≤ t,(
0 0
−1 −1

)
, t < τ ≤ 1.

Here, ‖G‖ ≤ 2 and 1 · 2 ·max {|α| , |β|} < 1. So, max {|α| , |β|} < 1
2 . We can

easily see that the given system is Ulam-Hyers stable.
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