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Finite difference method for a nonlinear fractional
Schrödinger equation with Neumann condition
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Abstract. In this paper, a special case of nonlinear fractional Schrödinger equation with
Neumann boundary condition is considered. Finite difference method is implemented to
solve the nonlinear fractional Schrödinger problem with Neumann boundary condition.
Previous theoretical results for the abstract form of the nonlinear fractional Schrödinger
equation are revisited to derive new applications of these theorems on the nonlinear frac-
tional Schrödinger problems with Neumann boundary condition. Consequently, first and
second order of accuracy difference schemes are constructed for the nonlinear fractional
Schrödinger problem with Neumann boundary condition. Stability analysis show that the
constructed difference schemes are stable. Stability theorems for the stability of the non-
linear fractional Schrödinger problem with Neumann boundary condition are presented.
Additionally, applications of the new theoretical results are presented on a one dimen-
sional nonlinear fractional Schrödinger problem and a multidimensional nonlinear frac-
tional Schrödinger problem with Neumann boundary conditions. Numerical results are
presented on one and multidimensional nonlinear fractional Schrödinger problems with
Neumann boundary conditions and different orders of derivatives in fractional derivative
term. Numerical results support the validity and applicability of the theoretical results.
Numerical results present the convergence rates are appropriate with the theoretical find-
ings and construction of the difference schemes for the nonlinear fractional Schrödinger
problem with Neumann boundary condition.
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1 Introduction

In literature, fractional Schrödinger equations exist with a fractional derivative
appearing in time, space or both time and space variables [1–4]. In this study,
we consider a nonlinear fractional Schrödinger equation which is established by
adding a nonlinear term to the linear form of Schrödinger equation as idudt +Au =

t∫
0
f (s,Dα

s u(s)) ds, 0 < t < T, 0 < α < 1,

u(0) = 0.
(1)
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Analysis of various Schrödinger equations in an abstract form exists in literature
widely [5]. Here, we will consider some applications of the theoretical results for
abstract nonlinear fractional Schrödinger equation (1) in [6].

In [6], Hα is introduced as the Banach space consisting of all abstract functions
v(t) having a fractional derivative of order α, defined on [0, T ] with values in H
for which the following norm is finite:

‖ v ‖Hα= max
0≤t≤T

‖ Dα
0+v(t) ‖H + max

0≤t≤T
‖v(t)‖H . (2)

Additionally, the theorem on existence and uniqueness of a bounded solution for
the abstract problem (1) is given below.

Theorem 1.1. We assume that the following hypotheses hold:

(i) For any t ∈ [0, T ], u0(t) ∈ Hα and

‖Dα
t u0(t)‖H ≤M. (3)

(ii) The function f : [0, T ]×Hα → H is continuous, that is

‖f(t,Dα
t u(t))‖H ≤ M̄ (4)

in [0, T ]×Hα and Lipschitz condition is satisfied with respect to t uniformly

‖f(t,Dα
t u)− f(t,Dα

t v)‖H ≤ L‖Dα
t u−Dα

t v‖H , (5)

where L,M, M̄ are positive constants. Then, a unique bounded solution u(t) for
problem (1) exists in Hα.

Furthermore, first and second order of accuracy difference schemes are estab-
lished for abstract problem (1) in [6]. Discretization through time variable in N
steps starts with denoting a step size τ = T/N where [0, T ] is the time interval for
problem (1). The set of grid points is given as

[0, T ]τ = {tk = kτ, 0 ≤ k ≤ N,Nτ = T}, (6)

where uk = u(tk), 0 ≤ k ≤ N is the approximate solution and u(t) is the analyti-
cal solution of problem (1).

First order of accuracy DS for problem (1) is established as
i
uk−uk−1

τ +Auk = τ
∑k

l=1 f(tl−1, D
1,α
τ ul−1),

tl = lτ, 1 ≤ l ≤ k ≤ N, Nτ = T,

u0 = 0

(7)
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where

D1,α
τ uk =

k∑
m=1

Γ(k −m− α+ 1)
Γ(1− α)(k −m)!

(
um − um−1

τα

)
, 1 ≤ k ≤ N (8)

and Crank-Nicolson method leads to second order of accuracy in time as
i
uk−uk−1

τ + 1
2Auk +

1
2Auk−1 = τ

k∑
l=1
Fl−1

(
D2,α
τ ul−1

)
,

tl = lτ, 1 ≤ l ≤ k ≤ N, Nτ = T,

u0 = 0,

(9)

where [7]

D2,α
τ uk =



2τ−α

Γ(3− α)
(u1 − u0) + τ 1−α (−α)

Γ(3−α)u
′(0), k = 1,

2−ατ−α

Γ(3− α)
{(2 + α) (u2 − 2u1 + u0)

+(4− 2α) (u1 − u0)} , k = 2,

k−1∑
m=1

{
τ−α

2Γ(2− α)
η (k −m) (um+1 − um−1)

+
ζ(k −m)

(2− α)
(um+1 − 2um + um−1)

ταΓ(1− α)

}

+
(k −m)η (k −m)

(1− α)
(um+1 − 2um + um−1)

ταΓ(1− α)

+
τ−α(uk − uk−2)

2Γ(2− α)

+
τ−α(uk − 2uk−1 + uk−2)

Γ(3− α)
, 3 ≤ k ≤ N,

(10)

η(r) = (r + 1)1−α − r1−α, (11)

ζ(r) = r2−α − (r + 1)2−α (12)
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and

k∑
l=1

Fl−1
(
D2,αul−1

)
=



1
2

(
f( τ2 ,

1
2

(
D2,α
τ u1 +D2,α

τ u0

)
)

+ f(0, D2,α
τ u0)

)
, k = 1,

k−1∑
l=1
f(tl, D

2,α
τ ul)

+1
2f(tk− τ2 ,

1
2

(
D2,α
τ uk) +D2,α

τ uk−1)
)

+1
2f(0, D

2,α
τ u0), 2 ≤ k ≤ N.

(13)

Furthermore, Hα
τ is introduced as the Banach space of all abstract mesh functions

vτ = {vk}Nk=0 having a fractional difference derivative of order α, defined on
[0, T ]τ with values in H for which the following norms are finite:

‖ vτ ‖Hα= max
0≤l≤N

‖ D1,αvl ‖H + max
0≤l≤N

‖vl‖H , (14)

‖ vτ ‖Hα= max
0≤l≤N

‖ D2,αvl ‖H + max
0≤l≤N

‖vl‖H . (15)

Stability theorem for difference schemes (34) and (35) is presented in [6] as
follows:

Theorem 1.2. Let the assumptions (3), (4) and (5) be satisfied. Then, there exist
unique solutions of DS (7) and DS (9) which are bounded in Hα

τ of uniformly with
respect to τ .

In the present paper, a mixed boundary value problem for the m-dimensional
nonlinear fractional Schrödinger equation is considered with Neumann boundary
conditions: 

i∂u∂t −
∑m

r=1(ar(x)uxr)xr =
t∫

0
f (s,Dα

s u(s, x)) ds,

0 < t < T, x = (x1, · · ·, xm) ∈ Ω,

u(0, x) = 0, x ∈ Ω,

∂u/∂−→n = 0, x ∈ S.

(16)

Here ar(x), x ∈ Ω is a smooth function and ar(x) ≥ a > 0 for 1 ≤ r ≤ m
where a is a constant. −→n denotes the normal to the boundary S = ∂Ω.

As an application of Theorem 1.1, multidimensional problem with Neumann
condition (16) is considered in the present work. Additionally, first and second
order of accuracy difference schemes are established for problem (16). Stability
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of the constructed difference schemes are investigated in the light of Theorem 1.2.
Numerical experiments are carried out on a mixed boundary value problem for a
one-dimensional nonlinear fractional Schrödinger equation to show the effective-
ness and applicability of the theoretical results.

2 Discretization of the problem

In order to discretize problem (16) with respect to space variable, we define the
grid sets:

Ωh = {xr = (h1r1, ..., hmrm), r = (r1, ..., rm),

0 ≤ rj ≤ Nj , hjNj = 1, j = 1, ...,m, }
Ωh = Ωh ∩Ω, Sh = Ωh ∩ S.

(17)

Then, the spatial derivative operator in problem (16) is replaced with the difference
operator:

Axhu
h = −

m∑
r=1

(ar(x)u
h
xr)xr,jr (18)

acting in the space of grid functions uh(x), satisfying the conditionsDhuh(x) = 0
for all x ∈ Sh. Here,Dhuh(x) is an approximation of ∂u/∂−→n which is formulated
according to the desired order of accuracy [8]. Since Axh is a self-adjoint positive
definite operator in L2(Ωh) [9], the following initial value problem is achieved


i∂u

h(t,x)
∂t +Axhu

h(t, x) =
t∫

0
fh
(
s,Dα

s u
h(s, x)

)
ds,

0 < t < T, x ∈ Ωh,

u(0, x) = 0, x ∈ Ωh.

(19)

In order to discretize equation (19) with respect to time, we use approximation
formulas (8) and (10) for fractional time derivative.

Implementing a similar approach with the one in [5] for approximation of para-
bolic equations, we get the first and second orders of accuracy difference schemes
for problem (19) respectively as

{
i
uhk−u

h
k−1

τ +Axhu
h
k =

∑k
l=1f(tl−1, x,D

1,α
τ uhl−1)τ, x ∈ Ωh,

uh0 (x) = 0, x ∈ Ωh

(20)
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and 
i
uhk−u

h
k−1

τ + 1
2A

x
hu

h
k +

1
2A

x
hu

h
k−1 = τ

k∑
l=1
F hl−1

(
D2,α
τ uhl−1, x

)
,

x ∈ Ωh, tk = kτ, 1 ≤ k ≤ N, Nτ = 1,
uh0 (x) = 0, x ∈ Ωh,

(21)

where

k∑
l=1

F hl−1

(
D2,α
τ uhl−1, x

)
=



1
2

(
f( τ2 , x,

1
2

(
D2,α
τ uh1 +D2,α

τ uh0

)
)

+f(0, x,D2,α
τ uh0 )

)
, k = 1,

k−1∑
l=1
f(tl, x,D

2,α
τ uhl )

+1
2f(tk− τ2 , x,

1
2

(
D2,α
τ uhk +D2,α

τ uhk−1

)
)

+1
2f(0, x,D

2,α
τ uh0 ), 2 ≤ k ≤ N.

(22)

Before presenting the stability theorem on DSs (28) and (49), we define
C ([0, T ]τ , H) as the Banach space of the mesh functions vτ defined on [0, T ]τ
with values in H, equipped with the norm

‖ vτ ‖C([0,T ]τ ,H)= max
0≤l≤N

‖vl‖H . (23)

Theorem 2.1. There exist unique solutions for DSs (28) and (49) which are bounded
in C(α) ([0, T ]τ , H) uniformly with respect to τ and h.

The proof of Theorem 2.1 is established on Theorem 1.1, Theorem 1.2 and
symmetry properties of the operator Axh which is specified by formula (18).

3 Applications on one and multidimensional problems

In the present part, we consider a one-dimensional and a multidimensional prob-
lem to apply the theoretical results in the previous section. The following one-
dimensional problem is considered:

i∂u∂t − (a(x)ux(t, x))x + δu(t, x) =
t∫

0
f (s,Dα

s u(s, x)) ds,

0 < t < T, 0 < x < 1,
u(0, x) = 0, x ∈ [0, 1],
ux(t, 0) = ux(t, 1) = 0, 0 ≤ t ≤ T

(24)
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where δ > 0. Firstly, the grid set for spatial discretization through one dimension
is defined as:

[0, 1]h = {x : xr = rh, 0 ≤ r ≤M,Mh = 1}. (25)

To the operator A originated by problem (24), we assign Axh difference operator
as:

Axhϕ
h(x) = {−(a(x)ϕx)x,r + δϕr}M−1

1 , (26)

performing in the space of functions ϕh(x) = {ϕr}M0 with the property ϕ1−ϕ0 =
0 and ϕM − ϕM−1 = 0. As the first step, we perform a substitution with Axh and
we get 

idu
h(t,x)
dt +Axhu

h(t, x) =
∫ t

0 f
h(s, x,Dα

s u
h(s, x))ds,

0 < t < 1, x ∈ [0, 1]h,
uh(0, x) = 0, x ∈ [0, 1]h.

(27)

Secondly, we replace problem (27) by DSs (7) and (9) as
i
uhk−u

h
k−1

τ +Axhu
h
k =

∑k
l=1f(tl−1, x,D

1,α
τ uhl−1)τ, x ∈ [0, 1]h,

tk = kτ, 1 ≤ k ≤ N, Nτ = 1,
uh0 (x) = 0, x ∈ [0, 1]h

(28)

and 
i
uhk−u

h
k−1

τ + 1
2A

x
hu

h
k +

1
2A

x
hu

h
k−1 = τ

k∑
l=1
F hl−1

(
D2,α
τ uhl−1, x

)
,

x ∈ [0, 1]h, tk = kτ, 1 ≤ k ≤ N, Nτ = 1,
uh0 (x) = 0, x ∈ [0, 1]h,

(29)

where
k∑
l=1
F hl−1

(
D2,α
τ uhl−1, x

)
is defined by formula (22).

Theorem 3.1. There exist unique solutions for DSs (28) and (49) which are bounded
in C(α) ([0, T ]τ , L2[0, 1]h) uniformly with respect to τ and h.

The proof of Theorem 3.1 is established on base of Theorem 1.1, Theorem 1.2
and symmetry properties of the operator Axh which is specified by formula (26).
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As a more generalized form of the previous problem, we consider an m-dimen-
sional Schrödinger problem with Neumann condition in boundary:

i∂u∂t −
∑m

r=1(ar(x)uxr)xr =
t∫

0
f (s,Dα

s u(s, x)) ds,

0 < t < T, x = (x1, · · ·, xm) ∈ Ω,

u(0, x) = 0, x ∈ Ω,

∂u/∂−→n = 0, x ∈ S,

(30)

where ar(x), x ∈ Ω is a smooth function and ar(x) ≥ a > 0 for 1 ≤ r ≤ m.
Here, a is a constant and S = ∂Ω is the boundary of the region. For spatial
discretization, we define the grid sets as:

Ωh = {xr = (h1r1, ..., hmrm), r = (r1, ..., rm),

0 ≤ rj ≤ Nj , hjNj = 1, j = 1, ...,m},
Ωh = Ωh ∩Ω, Sh = Ωh ∩ S.

(31)

To the operator A originated by problem (30), we assign the difference operator
Axh by the formula

Axhu
h(x) = −

m∑
r=1

(
ar(x)u

h
xr

)
xr,jr

(32)

which is a self-adjoint positive definite operatorL2(Ωh) performing in the space of
functions uh(x), satisfying the conditions Dhuh(x) = 0 (∀ x ∈ Sh). Performing
a substitution with Axh, we arrive at the initial value problem

idu
h(t,x)
dt +Axhu

h(t, x) =
∫ t

0 f
h(s, x,Dα

s u
h(s, x))ds,

0 < t < 1, x ∈ Ωh,

uh(0, x) = 0, x ∈ Ωh.

(33)

We replace problem (30) by the following DSs:
i
uhk−u

h
k−1

τ +Axhu
h
k =

∑k
l=1f(tl−1, x,D

1,α
τ uhl−1)τ, x ∈ Ωh,

tk = kτ, 1 ≤ k ≤ N, Nτ = 1,
uh0 (x) = 0, x ∈ Ωh

(34)

and
i
uhk−u

h
k−1

τ + 1
2A

x
hu

h
k +

1
2A

x
hu

h
k−1 = τ

k∑
l=1
Fl−1

(
D2,α
τ ul−1

)
, x ∈ Ωh,

tk = kτ, 1 ≤ k ≤ N, Nτ = 1,
uh0 (x) = 0, x ∈ Ωh,

(35)
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where
k∑
l=1
F hl−1

(
D2,α
τ uhl−1, x

)
is defined by formula (22).

Theorem 3.2. There exist unique solutions for DSs (34) and (35) which are bounded
in C(α)

(
[0, T ]τ , L2(Ωh)

)
uniformly with respect to τ and h.

The proof of Theorems 3.2 is established on base of Theorem 1.1, Theorem 1.2
and symmetry properties of the difference operator Axh specified by formula (32)
and the following theorem in [10]:

Theorem 3.3. The solutions of the elliptic difference problem{
Axhu

h(x) = wh(x), x ∈ Ωh,

Dhuh(x) = 0, x ∈ Sh

satisfy the following coercivity inequality:

m∑
r=1

∥∥∥uhxrxr,jr∥∥∥L2(Ωh)
≤M

∥∥∥wh∥∥∥
L2(Ωh)

.

4 Numerical analysis

We consider the following one-dimensional nonlinear FSDE with the exact solu-
tion u = t2 cos(x):

i∂u(t,x)∂t − ∂2u(t,x)
∂x2 =

t∫
0
f(s, x,Dαu(s, x))ds,

f(t, x,Dαu) =
(

sin(Dαu(t, x)− t2−α cosx
Γ(3−α) ) + 2 (i+ t) cosx

)
,

0 < x < π, 0 < t < 1,
u(0, x) = 0, 0 < x < π,

ux(t, 0) = ux(t, π) = 0, 0 < t < 1.

(36)

Here, we implement iterated forms of first and second order of difference schemes
(34) and (35) on a one dimensional nonlinear fractional Schrödinger problem as
in [11] due to nonlinearity. Fully discrete difference schemes are achieved by
implementation of central difference method for discretization of spatial operator.
Here, we consider τ = 1/N and h = π/M .
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The fully discrete difference scheme for (36) can be established by method (34)
as

i
u
n,(p+1)
k −un,(p+1)

k−1
τ − u

n+1,(p+1)
k −2un,(p+1)

k +u
n−1,(p+1)
k

h2 = g
n,(p)
k ,

1 ≤ n ≤M − 1, 1 ≤ k ≤ N,
u
n,(p+1)
0 = 0, 1 ≤ n ≤M − 1,

u
1,(p+1)
k − u0,(p+1)

k = u
M,(p+1)
k − uM−1,(p+1)

k = 0,
1 ≤ k ≤ N, 0 ≤ p ≤ pmax − 1.

(37)

Here, pmax is the maximum number of iterations needed to achieve desired
minimum error desired for each step of iteration.

u
n,(0)
k = 0, 0 ≤ k ≤ N, 0 ≤ n ≤M (38)

is considered as starting vector for the iteration of this experimental problem.
Right hand side of the main equation is defined with implementing classical Rie-
mann sum for integration as:

g
n,(p)
k = τ

k∑
l=1

f (1)
(
tl−1, xn, D

1,α
τ u

n,(p)
l−1

)
, (39)

where

f (1)(tk, xn, D
1,α
τ unk) = sin(D1,α

τ unk −
2t2−αk cosxn

Γ(3− α)
) + 2(i+ tk) cosxn. (40)

Here, Dα,1
τ is first order accurate formula for fractional derivative (8). Fully dis-

crete difference scheme (37) leads to the following matrix equation:

AUn+1,(p+1) +BUn,(p+1) + CUn−1,(p+1) = Gn,(p), (41)

where Gn,(0) is computed by considering Un,(0) =
−→
0 as the initial guess for

iteration. Furthermore, matrices can be described as follows:

A = [ai,j ]N×N , where
ai,i = −1/(h2) for 2 ≤ i ≤ N,
ai,j = 0 else;

(42)

B = [bi,j ]N×N , where b1,1 = 1,
bi,i−1 = −i/τ, bi,i = i/τ + 2/(h2) for 2 ≤ i ≤ N,
bi,j = 0 else;

(43)
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Un,(p+1) = [u
n,(p+1)
0 , u

n,(p+1)
1 , ..., u

n,(p+1)
N ]T , 1 ≤ k ≤ N, 0 ≤ p ≤ pmax, (44)

Gn,(p) = [0, gn,(p)1 , ..., g
n,(p)
N ]T , 1 ≤ k ≤ N, 0 ≤ p ≤ pmax (45)

and C = A. Matrix equation (41) is solved with a modified Gauss elimination
method applied in [6].

Similarly, fully discrete second order accurate difference scheme for (36) is
established by method (35) as

i
u
n,(p+1)
k −un,(p+1)

k−1
τ − u

n+1,(p+1)
k −2un,(p+1)

k +u
n−1,(p+1)
k

2h2

−u
n+1,(p+1)
k−1 −2un,(p+1)

k−1 +u
n−1,(p+1)
k−1

2h2 = q
n,(p)
k ,

1 ≤ n ≤M − 1, 1 ≤ k ≤ N,
u
n,(p+1)
0 = 0, 1 ≤ n ≤M − 1,

−3u0,(p+1)
k + 4u1,(p+1)

k − u2,(p+1)
k = 0,

−3uM,(p+1)
k + 4uM−1,(p+1)

k − uM−2,(p+1)
k = 0,

1 ≤ k ≤ N, 0 ≤ p ≤ pmax − 1.

(46)

Here, pmax is the maximum number of iterations needed to achieve desired mini-
mum error desired for each step of iteration.

u
n,(0)
k = 0, 0 ≤ k ≤ N, 0 ≤ n ≤M (47)

is considered as starting vector for the iteration of this experimental problem.
Right hand side of the main equation is defined as:

q
n,(p)
k = τ

k∑
l=1

Fl−1

(
D2,α
τ u

n,(p)
l−1

)
, (48)

where
k∑
l=1
Fl−1

(
D2,α
τ ul−1

)
is defined by formula (22) and

f(tk, xn, D
2,α
τ unk) = sin(D2,α

τ unk −
2t2−αk

Γ(3− α)
cosxn) + 2(i+ tk) cosxn. (49)

Here, Dα,2
τ is first order accurate formula for fractional derivative (10). Fully

discrete difference scheme (46) leads to the following matrix equation:

AUn+1,(p+1) +BUn,(p+1) + CUn−1,(p+1) = Qn,(p), (50)
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where Qn,(0) is computed by considering Un,(0) =
−→
0 . Furthermore, matrices can

be described as follows:

A = [ai,j ]N×N , where

ai,i = −1/(2h2), ai,i−1 = −1/(2h2) for 2 ≤ i ≤ N,
ai,j = 0 else;

(51)

B = [bi,j ]NxN , where b1,1 = 1,
bi,i−1 = −i/τ, bi,i = i/τ + 1/(h2) for 2 ≤ i ≤ N,
bi,j = 0 else;

(52)

Un,(p+1) = [u
n,(p+1)
0 , u

n,(p+1)
1 , ..., u

n,(p+1)
N ]T , 1 ≤ k ≤ N, 0 ≤ p ≤ pmax − 1,

(53)
Qn,(p) = [0, qn,(p)1 , ..., q

n,(p)
N ]T , 1 ≤ k ≤ N, 0 ≤ p ≤ pmax − 1 (54)

and C = A. Matrix equation (50) is solved with the same modified Gauss elimi-
nation method in [6]. Throughout the experiments, iterations terminate when the
maximum absolute error between each iteration becomes less than 10−7 at an iter-
ation step.

Table 1. Errors of solution for first order difference scheme (34) for problem (36),
where α = 0.50 when h = 0.002π

N E1 C1 E2 C2

20 4.70×10−2 0.99 5.99×10−2 0.98
40 2.36×10−2 1.00 3.04×10−2 0.97
80 1.18×10−2 0.95 1.55×10−2 0.94

160 6.11×10−3 - 8.10×10−3 -

L2 error-(E1) and maximum error-(E2) of first order difference scheme for
problem (36) are reported in Table 1 and Table 2 for α = 0.5 and α = 0.75
respectively. Also, estimated rates of convergence are demonstrated in Table 1 and
Table 2 for the time variable. A similar experiment is carried out for second order
of accuracy difference scheme of problem (36) which is obtained by implementa-
tion of difference scheme (35) on problem (36). Numerical results are presented
in Table 3 and Table 4 for α = 0.5 and α = 0.75 respectively. Here, it is useful to
note that estimated rates of convergence are demonstrated in the tables for errors
E1 and E2 as C1 and C2 respectively.
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Table 2. Errors of solution for first order difference scheme (34) for problem (36),
where α = 0.75 when h = 0.002π

N E1 C1 E2 C2

20 4.71×10−2 1.00 5.99×10−2 0.97
40 2.35×10−2 0.99 3.06×10−2 0.97
80 1.18×10−2 0.96 1.56×10−2 0.95

160 6.10×10−3 - 8.10×10−3 -

Numerical results support the convergence of solutions of the constructed first
and second orders of accuracy difference schemes to exact solution of problem
(36).

Table 3. Errors of solution for second order difference scheme (35) for problem
(36), where α = 0.50 when h = 0.002π

N E1 C1 E2 C2

20 5.99×10−4 1.99 7.53×10−4 1.99
40 1.51×10−4 2.00 1.90×10−4 2.02
80 3.75×10−5 2.08 4.69×10−5 2.09

160 8.83×10−6 - 1.10×10−5 -

Table 4. Errors of solution for second order difference scheme (35) for problem
(36), where α = 0.75 when h = 0.002π

N E1 C1 E2 C2

20 6.09×10−4 1.99 7.64×10−4 1.99
40 1.53×10−4 2.02 1.92×10−4 2.02
80 3.77×10−5 2.09 4.73×10−5 2.11
160 8.80 ×10−6 - 1.09×10−5 -

5 Conclusion

First and second orders of accuracy difference schemes are constructed for a mixed
type of nonlinear fractional Schrödinger problem with Neumann boundary condi-
tion. Stability theorems are presented for constructed difference schemes. Numer-
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ical results support the applicability of the theoretical findings.

Bibliography

[1] M. Fei, N. Wang and C. Huang, A second-order implicit difference scheme for
the nonlinear time-space fractional Schrödinger equation, Appl. Numer. Math. 153
(2020) 399–411.

[2] H. Emamirad and A. Rougirel, Time-fractional Schrödinger equation, J. Evol. Equ.
20(1) (2020) 279–293.

[3] P. Gorka, H. Prado and D. J. Pons, The asymptotic behavior of the time fractional
Schrödinger equation on Hilbert space, J. Math. Phys. 61(3) (2020) Article Number:
031501.

[4] M. Zheng, F. Liu and Z. Jin, The global analysis on the spectral collocation method
for time fractional Schrödinger equation, Appl. Math. Comput. 365 (2020) Article
Number: UNSP 124689.

[5] A. Ashyralyev and P. E. Sobolevskii, New Difference Schemes for Partial Differential
Equations, vol. 148 of Oper. Theory Adv. Appl., Birkhäuser, Basel, Boston, Berlin,
2004.

[6] A. Ashyralyev and B. Hicdurmaz, Multidimensional problems for nonlinear frac-
tional Schrödinger differential and difference equations, Math. Methods Appl. Sci.
2019 (2019) 1–21, DOI:10.1002/mma.5866.

[7] A. Ashyralyev, N. Emirov and Z. Cakir, Well-posedness of fractional parabolic dif-
ferential and difference equations with Dirichlet-Neumann conditions, Electron. J.
Differential Equations 97 (2014) 1–17.

[8] C. Ashyralyyev and M. Dedeturk, Approximation of the inverse elliptic problem
with mixed boundary value conditions and overdetermination, Bound. Value Probl.
2015 (2015) Article number:51, DOI=10.1186/s13661-015-0312-x.

[9] S. G. Krein, Linear Differential Equations in Banach Space, Nauka, Moskow, 1966.

[10] P. E. Sobolevskii, Difference Methods for the Approximate Solution of Differential
Equations, Izdat. Voronezh. Gosud. Univ., Voronezh, 1975 (in Russian).

[11] B. Hicdurmaz, On the numerical analysis of a nonlinear fractional Schrödinger equa-
tion with Neumann boundary condition, AIP Conference Proceedings 2183 (2019),
070022, DOI: 10.1063/1.5136184.

Received May 26, 2020; revised September 25, 2020; accepted November 21, 2020.

Author information

Betul Hicdurmaz, Department of Mathematics, Faculty of Engineering and Natural
Sciences, Istanbul Medeniyet University, Istanbul, Turkey.
E-mail: betul.hicdurmaz@medeniyet.edu.tr

mailto:betul.hicdurmaz@medeniyet.edu.tr

