About uniformly Lindelöf spaces

Bekbolot E. Kanetov, Ulukbek A. Saktanov and Meerim O. Zhanakunova

Communicated by Ljubisa Kocinac

Abstract. The idea of Lindelöfness is one of the most important in General Topology. There have been some variants in defining uniformly Lindelöfness of uniform spaces. For example, uniform *A*-Lindelöfness in the sense of L.V. Aparina [1], uniform *B*-Lindelöfness in the sense of A.A. Borubaev [2], uniform *I*-Lindelöfness in the sense of D.R. Isbell [5].

In this paper we propose a new approach to the definition of a uniform analogue of Lindelöfness. We introduce and study uniformly Lindelöf spaces.

Keywords. Finitely-additive open covering, locally finite uniform covering, \aleph_0 -boundedness, uniformly perfect mappings.

2020 Mathematics Subject Classification. 54E15, 54D20.

1 Introduction

Throughout this work all uniform spaces are defined in terms of coverings, are assumed to be Hausdorff and mappings are uniformly continuous [4].

For coverings α and β of the set X, the symbol $\alpha \succ \beta$ means that the covering α is a refinement of the covering β , i.e. for any $A \in \alpha$ there exists $B \in \beta$ such that $A \subset B$ and, for coverings α and β of a set X, we have: $\alpha \land \beta = \{A \cap B : A \in \alpha, B \in \beta\}$. The covering α is finitely-additive if $\alpha^{2} = \alpha$, where $\alpha^{2} = \{\bigcup \alpha_{0} : \alpha_{0} \subset \alpha \text{ is finite}\}$. $\alpha(x) = \bigcup St(\alpha, x)$, $St(\alpha, x) = \{A \in \alpha : A \ni x\}$, $x \in X$, $\alpha(M) = \bigcup St(\alpha, M)$, $St(\alpha, M) = \{A \in \alpha : A \cap M \neq \emptyset\}$, $M \subset X$.

For a uniform space (X, U) by τ_U we understand the topology generated by the uniformity U; for the Tychonoff space X by U_X we understand the universal uniformity.

A uniform space (X, U) is called:

(1) uniformly A-Lindelöf, if for each open covering α exist a countable uniform covering $\beta = \{B_n : n \in N\}$ and $\gamma \in U$ such that $\beta \succ \alpha^{\perp}$ and $\gamma(\overline{B}_n) \subset B_{n+1}$ for any $n \in N$ [1];

(2) uniformly *B*-Lindelöf, if it is both uniformly *B*-paracompact and \aleph_0 -bounded [2];

(3) uniformly *I*-Lindelöf, if every uniform covering has a locally finite uniform refinement [5];

(4) uniformly A-paracompact, if every open covering has a locally finite uniform refinement [1];

(5) strongly uniformly A-paracompact, if every open covering has a star finite uniform refinement [4];

(6) uniformly *B*-paracompact, if for each finitely-additive open covering λ of (X, U) there exists a sequence $\{\alpha_i : i \in N\} \subset U$ of uniform coverings such that the following condition is fulfilled: for each point $x \in X$ there exist number $i \in N$ and $L \in \lambda$ such that $\alpha_i(x) \subset L$ (U) [2];

(7) \aleph_0 -bounded if the uniformity U has a base consisting of countable coverings [2];

(8) strongly uniformly locally compact if the uniformity of U contains a locally finite uniform covering such that the closure of each its element is compact [1];

(9) uniformly locally Lindelöf if the uniformity of U contains a uniform covering whose closure of each element is Lindelöf [3];

For covering properties of uniform spaces close to \aleph_0 -boundedness and Lindelöfness see [7].

A uniformly continuous mapping $f : (X, U) \to (Y, V)$ of uniform space (X, U) onto a uniform space (Y, V) is called:

(1) precompact, if for each $\alpha \in U$ there exist a uniform covering $\beta \in V$ and finite uniform covering $\gamma \in U$, such that $f^{-1}\beta \wedge \gamma \succ \alpha[2]$;

(2) uniformly perfect, if it is both precompact and perfect [2];

(3) uniformly open, if f maps each open uniform covering $\alpha \in U$ to an open uniform covering $f\alpha \in V$ [2].

2 Uniformly Lindelöf spaces

Let (X, U) be a uniform space.

Definition 2.1. A uniform space (X, U) is said to be uniformly Lindelöf, if it is both uniformly A-paracompact and \aleph_0 -bounded.

Proposition 2.2. If (X, U) is a uniformly Lindelöf space, then its topological space (X, τ_U) is Lindelöf. Conversely, if (X, τ) is Lindelöf topological space, then the uniform space (X, U_X) is uniformly Lindelöf.

Proof. Let α be an arbitrary finitely-additive open covering of (X, τ_U) . Then for covering α there exists a locally finite uniform covering β such that $\beta \succ \alpha$. Since the space (X, U) is \aleph_0 -bounded the covering β contains a countable uniform

covering β_0 . Then for any $i \in N$ we have $B_i \subset \bigcup_{j=1}^k A_j$. The system $\{B_i \bigcap A_j\}$, i = 1, 2, ..., n, j = 1, 2, ..., k forms a countable open covering which is refinement of α . Consequently, the space (X, τ_U) is Lindelöf.

Conversely, if (X, τ) is Lindelöf, then the system of all open coverings forms a base of universal uniformity U_X of the space (X, τ) . It follows from this that (X, U_X) is uniformly Lindelöf.

Proposition 2.3. Any compact space is uniformly Lindelöf.

Proof. Any compact uniform space is precompact and uniformly A-paracompact. Consequently, the uniform space (X, U) is uniformly Lindelöf.

Any uniformly Lindelöf space is uniformly A-paracompact.

Proposition 2.4. Any closed subspace of a uniformly Lindelöf space is uniformly Lindelöf.

Proof. Let (M, U_M) be a subspace of (X, U). Note that space (M, U_M) is \aleph_0 bounded. Let α_M be an arbitrary finitely-additive open covering of the subspace (M, U_M) . Then there exits a finitely-additive open family α of (X, U), such that $\alpha \wedge \{M\} = \alpha_M$. Assume $\beta = \{\alpha, X \setminus M\}$. Obviously the covering β is a finitely-additive open covering of (X, U). Then there exists a locally finite uniform covering $\lambda \in U$ such that $\lambda \succ \beta$. Evidently, $\lambda_M \in U_M$. Hence $\lambda_M \succ \alpha_M$. It is easy to check that λ_M is a locally finite uniform covering of (M, U_M) . Thus, (M, U_M) is uniformly Lindelöf. \Box

Corollary 2.5. Any uniformly Lindelöf space is uniformly locally Lindelöf.

Corollary 2.6. Any strongly uniformly locally compact and \aleph_0 -bounded space is uniformly Lindelöf.

Corollary 2.7. The real space R with natural uniformity is uniformly Lindelöf.

Proof. It is clear that R is \aleph_0 -bounded. Let α be a finitely-additive open covering of R. Put $\beta = \{(n - 1, n + 1) : n = 0, \pm 1, \pm 2, ...\}$. Then β is a locally finite uniform covering of R. Since [n - 1, n + 1] is compact, there exists a finite family $\{A_1, A_2, ..., A_n\}, A_i \in \alpha, i = 1, 2, ..., n$ such that $(n - 1, n + 1) \subset [n - 1, n + 1] \subset \bigcup_{i=1}^n A_i$. Therefore, $\beta \succ \alpha^{\angle}$. Hence, R is uniformly Lindelöf. \Box

Proposition 2.8. Any uniformly Lindelöf space is uniformly B-Lindelöf and any uniformly B-Lindelöf space is uniformly I-Lindelöf.

Proof. Let (X, U) be a uniformly Lindelöf space. As it is known, every uniformly *A*-paracompact space is uniformly *B*-paracompact [4]. Hence, the uniform space (X, U) is uniformly *B*-Lindelöf.

Let (X, U) be a uniformly *B*-Lindelöf space. Then by the definition of uniformly *B*-Lindelöfness [2] we have (X, U) is a uniformly *I*-Lindelöf.

Corollary 2.9. Any uniformly Lindelöf space is uniformly I-Lindelöf.

Theorem 2.10. Any uniformly Lindelöf space is strongly uniformly A-paracompact.

Proof. Let (X, U) be a uniformly Lindelöf space. Then from the facts that the space (X, U) is strongly uniformly A-paracompact if and only if it is uniformly A-paracompact and (X, τ_U) is strongly paracompact, one concludes that b(X, U) is strongly uniformly A-paracompact.

Proposition 2.11. Any uniformly Lindelöf space is complete.

Proof. Let (X, U) be a uniformly Lindelöf space. The completeness of (X, U) follows from the fact that every strongly uniformly A-paracompact space is complete [4].

Noncomplete separable uniform space need not be uniformly Lindelöf. For example, the space (0, 1) is uniformly *B*-Lindelöf, but not uniformly Lindelöf.

Lemma 2.12. Let $f : (X,U) \to (Y,V)$ be a precompact mapping of a uniform space (X,U) to a uniform space (Y,V). If a space (Y,V) is \aleph_0 -bounded, then (X,U) is also \aleph_0 -bounded.

Proof. Let $f : (X, U) \to (Y, V)$ be a precompact mapping of a uniform space (X, U) to a uniform space (Y, V) and $\alpha \in U$ be an arbitrary uniform covering of X. Then by virtue of the precompactness of f there exist such a countable covering $\beta \in V$ and a finite covering $\gamma \in U$ that $f^{-1}\beta \wedge \gamma \succ f^{-1}\alpha$. But the covering $f^{-1}\beta \wedge \gamma$ is countable. Therefore the space (X, U) is \aleph_0 -bounded. \Box

Lemma 2.13. Let $f : (X, U) \to (Y, V)$ be a uniformly continuous mapping of a uniform space (X, U) and (Y, V). If β is a locally finite uniform covering of the space (Y, V), then $f^{-1}\beta$ is a locally finite uniform covering of the space (X, U).

Proof. By the conditions of the lemma for each point $x \in X$ there exists a neighborhood O_x such that O_x meets at most a finite number of elements of the covering β , i.e. exist elements $B_i \in \beta$, i = 1, 2, ..., n, such $O_x \subset \bigcup_{i=1}^n B_i$. As the mapping

f is uniformly continuous, the covering $f^{-1}\beta$ is uniform, i.e. $f^{-1}\beta \in U$. Hence $f^{-1}O_x \subset \bigcup_{i=1}^n f^{-1}B_i, f^{-1}B_i \in f^{-1}\beta$. So, $f^{-1}\beta$ is a locally finite uniform covering of (X, U).

Lemma 2.14. Let $f : (X, U) \to (Y, V)$ be a uniformly continuous mapping of a uniform space (X, U) to uniform space (Y, V). If a space (X, U) is \aleph_0 -bounded, then (Y, V) is also \aleph_0 -bounded.

Proof. Let $\beta \in V$ be an arbitrary uniform covering. Then $f^{-1}\beta \in U$. According to Proposition 1.1.6. [2, p. 40] the covering $f^{-1}\beta$ has a countable subcovering $f^{-1}\beta_0$. Then β_0 is a countable subcovering of β . Therefore the space (Y, V) is \aleph_0 -bounded.

Theorem 2.15. Let $f : (X, U) \to (Y, V)$ be a uniformly perfect mapping of a uniform space (X, U) onto a uniformly Lindelöf space (Y, V). Then (X, U) is uniformly Lindelöf.

Proof. According to Lemma 12 the space (X, U) is \aleph_0 -bounded. Let the uniform space (Y, V) be uniformly A-paracompact and α be an arbitrary finitely-additive open covering of (X, U). Then $\{f^{-1}y : y \in Y\} \succ \alpha$. Since the mapping f is closed, it follows that $\lambda = \{f^{\#}A : A \in \alpha\}$ is a finitely-additive open covering of $(Y, V), f^{\#}A = Y \setminus f(X \setminus A)$. By virtue of the Lindelöfness of the space (Y, V) there exist a locally finite covering $\beta \in V$ such that $\beta \succ \lambda$. Then $f^{-1}\beta \succ \lambda$ and according to Lemma 13 the covering $f^{-1}\beta$ is locally finite. So, (X, U) is uniformly Lindelöf.

Proposition 2.16. Let $f : (X,U) \to (Y,V)$ be a uniformly open mapping of a uniform space (X,U) onto a uniform space (Y,V). If (X,U) is a uniformly Lindelöf space, then (Y,V) is also uniformly Lindelöf.

Proof. Let f be a uniformly open mapping of a uniform space (X, U) onto a uniform space (Y, V) and α be an arbitrary finitely-additive open covering of Y. Then $f^{-1}\alpha$ is a finitely-additive open covering of the space (X, U) and due to the uniform A-paracompactness where is a locally finite uniformly open covering $\beta \in U$ of $f^{-1}\alpha$. Since f is open, $f(\beta) \succ \alpha$. Then (Y, V) is uniformly A-paracompact. Note that (Y, V) is \aleph_0 -bounded. So, the space (Y, V) is uniformly Lindelöf.

Bibliography

- L.V. Aparina, Uniform Lindelöf spaces, *Trudy Mosk. Math. Obshestva* 57 (1996), 3-15 (in Russian).
- [2] A.A. Borubaev, *Uniform Spaces and Uniformly Continuous Mappings*, Ilim, Frunze, 1990 (in Russian).
- [3] D. Buhagiar and B. Pasynkov, On uniform paracompactness, *Czech Math. J.* 46(121) (1996), 577-586.
- [4] R. Engelking, *General Topology*, 2nd edition, vol. 6 of Sigma Series in Pure Mathematics, Heldermann Verlag, Berlin, 1989.
- [5] J.R. Isbell, Uniform Spaces, American Mathematical Society, Providence, 1964.
- [6] B.E. Kanetov, Some Classes of Uniform Spaces and Uniformly Continuous Mappings, Bishkek, 2013 (in Russian).
- [7] L.D.R. Kočinac, Selection principles in uniform spaces, *Note Mat.* 22(2) (2003/2004), 127–139.

Received February 7, 2021; revised July 17, 2021; accepted August 31, 2021.

Author information

Bekbolot E. Kanetov, Jusup Balasagyn Kyrgyz National University, Bishkek, Kyrgyzstan. E-mail: bekbolot_kanetov@mail.ru

Ulukbek A. Saktanov, Osh State University, Osh, Kyrgyzstan. E-mail: uca73@mail.ru

Meerim O. Zhanakunova, Kuseyin Karasaev Bishkek Humanities University, Bishkek, Kyrgyzstan. E-mail: aelin_jasmin@mail.ru