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tablish new fixed point results for mappings under some rational contractions. Our idea
improves and extends corresponding fixed point theorems in the setting of b-metric, ex-
tended b-metric and classical metric spaces. Nontrivial examples are provided to support
the hypotheses and usefulness of the main result obtained herein.

Keywords. Complex valued metric space, complex valued non-negative extended
b-metric space, fixed point, integral equation.

2020 Mathematics Subject Classification. 46S40, 47H10, 54H25.

1 Introduction

Fixed point theory is one of the highly embraced fields in mathematics. In this
area, a huge involvement has been made by Banach [6], who gave the notion of
contraction mapping due to a complete metric space to locate fixed point of the
specified function. In 1969, Kannan [15] gave an alternate sort of contractive con-
dition that demonstrated fixed point theorem. The distinction in Banach theorem
and that of mapping in Kannan is that continuity is necessary for contraction of Ba-
nach maps but Kannan maps are not necessarily continuous. Additionally, Chater-
jea [7] gave similar kind of contraction. The classical fixed point theorem due to
Banach [6] has been generalized by many researchers in various ways (see, for ex-
ample, [3,4,7,11]) and the references therein. One may also consult Rhoades [17]
for different definitions of contractive type mappings. Moreover, all the general-
izations of Banach fixed point theorem is further classified in two directions-either
the contractive condition is replaced with a more generalized one or the axioms
characterizing the ground set is enlarged or weakened. In the second case, some
of these metric-like spaces are called semimetric, quasimetric, pseuodometric, b-
metric, K-metric, to mention but a few. Along this line, by replacing the set of
real numbers as the usual co-domain of a metric, Huang and Zhang [12] estab-
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lished the concept of cone metric as a generalization of metric spaces, thereby,
establishing some fixed point theorems for contractive mappings on cone metric
spaces. Thereafter, many authors have come up with various important fixed point
results in the setting of cone metric spaces (see, for example, [13, 19]). The inter-
ested researcher may also want to go deeply into a comprehensive new survey on
cone metric spaces by Aleksić et al. [2].

It is well-known that fixed point theorems involving rational contractions cannot
be extended or meaningless in cone metric spaces. To circumvent this problem,
Azam et al. [3] introduced the notion of complex valued metric spaces and ob-
tained sufficient conditions for the existence of common fixed points of a pair of
mappings satisfying contractive type inequalities involving rational expressions.
It is interesting to note that complex valued metric space is a special class of
cone metric spaces. But, the definition of a cone metric is based on the under-
lying Banach space which is not a division ring; thus, many results of analysis
regarding divisions cannot be generalized to cone metric spaces. On this develop-
ment, the study of fixed point theorems concerning rational inequalities in com-
plex valued metric spaces have been growing at a geometric rate (see, for example,
[9, 16, 20]). Along the line, the idea of b-metric space was presented by Czerwik
[8] in 1993. Branciari [21] invented the concept of rectangular metric space by
modifying the triangular inequality. Rao [18] introduced the notion of fixed point
results on complex valued b-metric spaces, which is broader than complex valued
metric spaces. However, every complex valued b-metric space is a cone b-metric
space over Banach algebra C in which the cone is normal with the coefficient of
normality K = 1, and where the cone has non-empty interior (that is, solid cone).
Following [18], various authors have demonstrated fixed point results for different
mappings fulfilling rational inequalities with regards to complex valued b-metric
spaces (see, for instance, [1, 5]).

Motivated by the ideas presented in [3,8,21], we introduce the concept of com-
plex valued non-negative extended b-metric spaces and establish new fixed point
theorems for mappings under some rational contractive inequalities. Our idea im-
proves and extends the above mentioned articles and a few others in the corre-
sponding literature. Nontrivial examples are provided to indicate the usefulness
and validity of the main result obtained herein.

2 Preliminaries

In this section, we recall some specific concepts which are necessary for the pre-
sentation of our main results.

Definition 2.1. [3] Let C be the set of all complex numbers and z1, z2 ∈ C. The
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partial order on C is defined as:
z1 ≼ z2, if and only if Re(z1) ≤ Re(z2) and Im(z1) ≤ Im(z2). This implies that
z1 ≼ z2 if one of the following conditions holds:

(i) Re(z1) = Re(z2), Im(z1) < Im(z2),

(ii) Re(z1) < Re(z2), Im(z1) = Im(x2),

(iii) Re(z1) < Re(z2), Im(z1) < Im(z2),

(iv) Re(z1) = Re(z2), Im(z1) = Im(z2).

Definition 2.2. [3] Let X be a non-empty set. If the mapping d : X × X → C
satisfies the following conditions :
(i) 0 ≼ d(x, y) and d(x, y) = 0 if and only if x = y;
(ii) d(x, y) = d(y, x);
(iii) d(x, y) ≼ d(x, z) + d(z, y), for all x, z, y ∈ X ,
then d is known as a complex valued metric on X , and the pair (X, d) is said to be
a complex valued metric space.

Example 2.3. Let X = X1 ∪X2, where

X1 = {z ∈ C : Re(z) ≥ 0 and Im(z) = 0}

and
X2 = {z ∈ C : Re(z) = 0 and Im(z) ≥ 0}.

Define d : X ×X −→ C as follows:

d(z1, z2) =


2
3 |x1 − x2|+ i

2 |x1 − x2| , if z1, z2 ∈ X1;
1
2 |y1 − y2|+ i

2 |y1 − y2| , if z1, z2 ∈ X2;( 1
2y1 +

2
3x2

)
+ i

( 1
3y1 +

1
2x2

)
, if z1 ∈ X1, z2 ∈ X2,

where z1 = x1 + iy1 and z2 = x2 + iy2. Then, (X, d) is a complex valued metric
space.

Definition 2.4. [3] Let X be a non-empty set. The mapping d : X × X → C
satisfies the following conditions :
(i) 0 ≼ d(x, y) and d(x, y) = 0 if and only if x = y;
(ii) d(x, y) = d(y, x);
(iii) d(x, y) ≼ τ [d(x, z) + d(z, y)], for all x, z, y ∈ X , where τ ≥ 1.
Then d is known as a complex valued b-metric on X , and the pair (X, d) is said to
be a complex valued b-metric space.
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Example 2.5. [18] Let X = [0, 1]. Define a mapping d : X ×X → C by

d(x, y) = |x− y|2 + i|x− y|2

for all x, y ∈ X . Then (X, d) is a complex valued b-metric space with τ = 2.

Definition 2.6. [3] Let X be a non-empty set, θ : X ×X → [1,∞) be a function
and the mapping d : X ×X → C satisfies the following conditions :
(i) 0 ≼ d(x, y) and d(x, y) = 0 ⇐⇒ x = y;
(ii) d(x, y) = d(y, x);
(iii) d(x, y) ≼ θ(x, y)[d(x, z) + d(z, y)], ∀ x, z, y ∈ X ,
then d is known as a complex valued extended b-metric on X , and the pair (X, d)
is said to be a complex valued extended b-metric space.

Example 2.7. [3] Let X = C([a, b],R) be the space of all continuous real valued
functions defined on [a, b] and a function θ : X ×X → [1,∞) be given by

θ(x, y) = |x(t)|+ |y(t)|+ 2.

Also, define d : X ×X → C by

d(x, y) = max
t∈[a,b]

∣∣x(t)− y(t)
∣∣2.

Then, (X, d) is complex valued extended b-metric space.

Definition 2.8. Let X be a non-empty set, θ0, θ : X ×X → [0,∞) be defined by

θ(x, y) = θ0(x, y) + τ,

for all x, y ∈ X, and τ ≥ 1. Also, define a function d : X × X → C, if for all
x, y, z ∈ X , the following statements hold.
(i) 0 ≼ d(x, y) and d(x, y) = 0 if and only if x = y;
(ii) d(x, y) = d(y, x);
(iii) d(x, y) ≼ θ(x, y)[d(x, z) + d(z, y)].
Then d is called a complex valued non-negative extended b-metric on X and the
pair (X, d) is called a complex valued non-negative extended b-metric space.

Derivation of complex valued extended b-metric spaces
If we put θ0(x, y) = x + y and τ = 1, then we get θ(x, y) = 1 + x + y = θ∗(x, y).
Property (iii) of Definition 2.8 will be replaced by

d(x, y) ≼ θ∗(x, y)[d(x, z) + d(z, y)].
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Thus, the Definition 2.8 with the replaced property becomes Complex valued extended
b-metric space.
Derivation of complex valued b-metric spaces
If we put θ0(x, y) = 0, then θ(x, y) = 0+τ, where τ ≥ 1, then Property (iii) of Definition
2.8 is

d(x, y) ≼ τ [d(x, z) + d(z, y)].

Then, Definition oct202 with this property is the definition of Complex valued b-metric
spaces.
Derivation of complex valued metric space
By the similar way, if we put τ = 1, in the above definition then it defines the complex
valued metric space.
Derivation of ordinary metric space
In the above, if we replace ground space C by R, we get ordinary metric space.

Example 2.9. [18] Let X = [0, 1]. Define a mapping d : X ×X → C by

d(x, y) = |x− y|2 + i|x− y|2

for all x, y ∈ X . Then (X, d) is a complex valued non-negative extended b-metric space
with τ = 2 and θ0(x, y) = 0.

Example 2.10. [20] Let X be a non-empty set and θ0, θ : X ×X → [0,∞) be defined as:

θ(x, y) = 1 + x+ y , θ0(x, y) = x+ y, τ = 1.

Further, let

(i) d(x, y) = i
xy , for all x, y ∈ (0, 1];

(ii) d(x, y) = 0 ⇔ x = y for all x, y ∈ [0, 1];

(iii) d(x, 0) = d(0, x) = i
x for all x ∈ (0, 1].

Then the pair (X, d) is a complex valued non-negative extended b-metric space.

Example 2.11. [20] Let X = [0,∞). θ : X × X → [0,∞) be a function defined by
θ(x, y) = 1 + x+ y and d : X ×X −→ C be given as

d(x, y) =

{
0, if x = y

i, if x ̸= y.

Then (X, d) is a complex valued non-negative extended b-metric space.

Definition 2.12. Let S and T be self mappings of a non-empty set X.
(i) A point x ∈ X is said to be a fixed point of T if Tx = x.
(ii) A point x ∈ X is said to be a coincidence point of S and T if Tx = Sx and called
w = Tx = Sx a point of coincidence of S and T.
(iii) A point x ∈ X is said to be common fixed of T and S if x = Sx = Tx.



40 N. Ullah, M. S. Shagari, T. A. Khan, A. U. Khan and M. A. U. Khan

Lemma 2.13. [3] Let (X, d) be a complex valued rectangular extended b- metric space
and {xp} be a sequence in X . Then {xp} converges to x ∈ X if |d(xp, x)| → 0 as
p → ∞.

Lemma 2.14. [3] Let (X, d) be a complex valued non-negative extended b- metric space
and {xp} be a sequence in X . Then {xp} is a Cauchy sequence if and only if |d(xp, xq)| →
0 as p, q → ∞.

3 Main results

Our main result runs as follows.

Theorem 3.1. Let (X, d) be a complete complex valued non-negative extended b-metric
space, θ, θi : X ×X → [0,∞) ( i = 0, 1, 2 and θ = θ0 + τ, τ ≥ 1) and S, T : X → X
be mappings satisfying the following conditions:

(i) lim
n→∞

θ(xn+1, xm)θ1(xn+1, xn+2) + θ2(xn+1, xn+2) < 1;

(ii) d(Sx, Ty) ≼ θ1(x, y)d(x, y) + θ2(x, y)
d(x, Sx)d(y, Ty)

1 + d(x, y)
.

Then S, T have a unique common fixed point in X .

Proof. Led x0 ∈ X be arbitrary point in X. We construct a sequence {xn} such that

x2n+1 = Sx2n, x2n+2 = Tx2n+1 (1)

for all n ≥ 0. From the hypothesis and 1, we get

d(x2n+1, x2n+2)

= d(Sx2n, Tx2n+1)

≼ θ1(x2n, x2n+1)d(x2n, x2n+1) +
θ2(x2n, x2n+1)d(x2n, Sx2n)d(x2n+1, Tx2n+1)

1 + d(x2n, x2n+1)

≼ θ1(x2n, x2n+1)d(x2n, x2n+1) + θ2(x2n, x2n+1)d(x2n+1, Tx2n+1)
d(x2n, x2n+1)

1 + d(x2n, x2n+1)

≼ θ1(x2n, x2n+1)d(x2n, x2n+1) + θ2(x2n, x2n+1)d(x2n+1, x2n+2).

This implies that

(1 − θ2(x2n, x2n+1))d(x2n+1, x2n+2) ≼ θ1(x2n, x2n+1)d(x2n, x2n+1).
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That is,

d(x2n+1, x2n+2)

≼ θ1(x2n, x2n+1)

1 − θ2(x2n, x2n+1)
d(x2n, x2n+1)

≼ θ1(x2n, x2n+1)

1 − θ2(x2n, x2n+1)

θ1(x2n−1, x2n)

1 − θ2(x2n−1, x2n)
d(x2n−1, x2n)

≼ θ1(x2n, x2n+1)

1 − θ2(x2n, x2n+1)

θ1(x2n−1, x2n)

1 − θ2(x2n−1, x2n)

θ1(x2n−2, x2n−1)

1 − θ2(x2n−2, x2n−1)
d(x2n−2, x2n−1).

By continuing in this way, we get

d(x2n+1, x2n+2) ≼ θ1(x2n, x2n+1)

1 − θ2(x2n, x2n+1)

θ1(x2n−1, x2n)

1 − θ2(x2n−1, x2n)

θ1(x2n−2, x2n−1)

1 − θ2(x2n−2, x2n−1)

...

× θ1(x0, x1)

1 − θ2(x0, x1)
d(x0, x1).

For m > n, we have

d(xn, xm) ≼ θ(xn, xm)d(xn, xn+1) + θ(xn, xm)θ(xn+1, xm)d(xn+1, xn+2) + · · ·
+ θ(xn, xm)θ(xn+1, xm)θ(xn+2, xm) · · · θ(xm−1, xm)d(xm−1, xm),

≼ θ(x0, xm)θ(x1, xm)θ(x2, xm) · · · θ(xn−1, xm)θ(xn, xm)

θ1(x0, x1)

1 − θ2(x0, x1)

θ1(x1, x2)

1 − θ2(x1, x2)
· · · θ1(xn−1, xn)

1 − θ2(xn−1, xn)
d(x0, x1)

+ θ(x0, xm)θ(x1, xm)θ(x2, xm) · · · θ(xn, xm)θ(xn+1, xm)

θ1(x0, x1)

1 − θ2(x0, x1)

θ1(x1, x2)

1 − θ2(x1, x2)
· · ·

θ1(xn+1, xn+2)

1 − θ2(xn+1, xn+2)
d(x0, x1)

...

+ θ(x0, xm)θ(x1, xm)θ(x2, xm) · · · θ(xm−2, xm)θ(xm−1, xm)

θ1(x0, x1)

1 − θ2(x0, x1)

θ1(x1, x2)

1 − θ2(x1, x2)
· · ·

θ1(xm−2, xm−1)

1 − θ2(xm−2, xm−1)
d(x0, x1).
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This implies

d(xn, xm) ≼ θ(xn, xm)d(xn, xn+1) + θ(xn, xm)θ(xn+1, xm)d(xn+1, xn+2) + · · ·
+ θ(xn, xm)θ(xn+1, xm)θ(xn+2, xm) · · · θ(xm−1, xm)d(xm−1, xm),

≼ d(x0, x1)

[
θ(x0, xm)θ(x1, xm)θ(x2, xm) · · · θ(xn−1, xm)θ(xn, xm)

θ1(x0, x1)

1 − θ2(x0, x1)

θ1(x1, x2)

1 − θ2(x1, x2)
· · · θ1(xn−1, xn)

1 − θ2(xn−1, xn)

+ θ(x0, xm)θ(x1, xm)θ(x2, xm) · · · θ(xn, xm)θ(xn+1, xm)

θ1(x0, x1)

1 − θ2(x0, x1)

θ1(x1, x2)

1 − θ2(x1, x2)
· · ·

θ1(xn+1, xn+2)

1 − θ2(xn+1, xn+2)

...

+ θ(x0, xm)θ(x1, xm)θ(x2, xm) · · · θ(xm−2, xm)θ(xm−1, xm)

θ1(x0, x1)

1 − θ2(x0, x1)

θ1(x1, x2)

1 − θ2(x1, x2)
· · ·

θ1(xm−2, xm−1)

1 − θ2(xm−2, xm−1)

]
.

Since, limn→∞ θ(xn+1, xm)θ1(xn+1, xn+2) + θ2(xn+1, xn+2) < 1, so the series∑∞
n=0

∏n
i=0

θ(xi,xm)θ1(xi,xi+1)
1−θ1(xi,xi+1)

converges by ratio test. For each m ∈ N, let

Sm−1 =

m−1∑
j=0

j∏
i=0

θ(xi, xm)θ1(xi, xi+1)

1 − θ1(xi, xi+1)
, Sn =

n∑
j=0

j∏
i=0

θ(xi, xm)θ1(xi, xi+1)

1 − θ1(xi, xi+1)
.

Thus, for m > n, the above inequality implies that

d(xn, xm) ≼ d(x0, x1) [Sm−1 − Sn] .

That is,
|d(xn, xm)| ≤ |d(x0, x1)| [Sm−1 − Sn] . (2)

Letting n −→ ∞ in (2), we conclude that {xn} is a Cauchy sequence. Since X is com-
plete, there exists u ∈ X such that xn −→ u (n −→ ∞).
To see that Su = u, consider

d(u, Su)

≼ d(u, x2n+2) + d(x2n+2, Su)

= d(u, x2n+2) + d(Tx2n+1, Su)

= d(u, x2n+2) + d(Su, Tx2n+1)

≼ d(u, x2n+2) + θ1(u, x2n+1)d(u, x2n+1) +
θ2(u, x2n+1)d(u, Su)d(x2n+1, Tx2n+1)

1 + d(u, x2n+1)
.
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The above inequality implies that∣∣∣∣d(u, Su)∣∣∣∣
≤

∣∣∣∣d(u, x2n+2)

∣∣∣∣+ ∣∣∣∣θ1(u, x2n+1)d(u, x2n+1)

∣∣∣∣+ ∣∣∣∣θ2(u, x2n+1)d(u, Su)d(x2n+1, Tx2n+1)

1 + d(u, x2n+1)

∣∣∣∣.
By letting n −→ ∞ in the above expression, |d(u, Su)| ≤ 0. Thus, we proved that
u = Su. Similarly, we can prove that u = Tu. Hence, u is the common fixed point of
S and T . Finally, to show that u is the unique fixed point of S and T , assume that u∗ is
another fixed point of S and T with u ̸= u∗. Then,

d(u, u∗) = d(Su, Tu∗) ≼θ1(u, u
∗)d(u, u∗) +

θ2(u, u
∗)d(u, Su)d(u∗, Tu∗)

1 + d(u, u∗)
,

which gives∣∣∣∣d(u, u∗)

∣∣∣∣ ≤ θ1(u, u
∗)

∣∣∣∣d(u, u∗)

∣∣∣∣+ ∣∣∣∣θ2(u, u
∗)d(u, Su)d(u∗, Tu∗)

1 + d(u, u∗)

∣∣∣∣
and (

1 − θ1(u, u
∗)

)
d(u, u∗) ≤ 0,

which implies that u = u∗. Hence u is the unique common fixed point of S and T.

Corollary 3.2. Let (X, d) be a complete complex valued non-negative extended b-metric
space, θ, θi : X ×X → [0,∞)( i = 0, 1, 2 and θ = θ0 + τ, τ ≥ 1) and T : X → X be a
mapping satisfying the following conditions:

(i) lim
n→∞

θ(xn+1, xm)θ1(xn+1, xn+2) + θ2(xn+1, xn+2) < 1;

(ii) d(Tx, Ty) ≼ θ1(x, y)d(x, y) + θ2(x, y)
d(x, Tx)d(y, Ty)

1 + d(x, y)
.

Then T has a unique fixed point.

Proof. Take S = T in Theorem 3.1.

Corollary 3.3. (see Azam et al. [3, Theorem 4]) Let (X, d) be a complete complex valued
metric space and S, T : X → X. If S and T satisfy

d(Sx, Ty) ≼ λd(x, y) +
µd(x, Sx)d(y, Ty)

1 + d(x, y)

for all x, y ∈ X, where λ, µ are non-negative reals with λ+ µ < 1. Then S and T have a
common fixed point in X .
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Proof. Put θ1(x, y) = λ and θ2(x, y) = µ in Corollary 3.2.

Theorem 3.4. Let (X, d) be a complete complex valued non-negative extended b-metric
space, θ, θi : X ×X → [0,∞) ( i = 0, 1, 2 and θ = θ0 + τ, τ ≥ 1) and T : X → X be
mappings satisfying the following conditions :

(i) lim
n→∞

θ(xn+1, xm)θ1(xn+1, xn+2) + θ2(xn+1, xn+2) < 1;

(ii) d(Tnx, Tny) ≼ θ1(x, y)d(x, y) + θ2(x, y)
d(x, Tnx)d(y, Tny)

1 + d(x, y)
.

Then T has a unique fixed point in X .

Proof. From Corollary 3.2, we get that Tn has unique fixed point u, that is, Tnu = u.
The result then follows from the fact that

d(Tu, u) = d(TTnu, Tnu) = d(TnTu, Tnu)

≼ θ1(Tu, u)d(Tu, u) +
θ2(Tu, u)d(Tu, T

nTu)d(u, Tnu)

1 + d(Tu, u)

≼ θ1(Tu, u)d(Tu, u) +
θ2(Tu, u)d(Tu, T

nTu)d(u, u)

1 + d(Tu, u)

= θ1(Tu, u)d(Tu, u),

from which we have
(

1 − θ1(Tu, u)

)
d(Tu, u) ≼ 0. This implies that T has a unique

fixed point.

Example 3.5. Let X = C([1, 3],R), a > 0 and for every x, y ∈ X , take

d(x, y) = max
t∈[1,3]

∣∣x(t)− y(t)
∣∣√1 + a2eitan

−1a.

Define T : X → X by

T (x(t)) = 4 +

∫ t

1
(x(u) + u2)eu−1du, t ∈ [1, 3].

Then, for every x, y ∈ X ,

d(Tx, Ty) = max
t∈[1,3]

∣∣T (x(t))− T (y(t))
∣∣√1 + a2eitan

−1a

≼ θ1(x, y)

∫ 3

1
max
t∈[1,3]

∣∣x(u)− y(u)
∣∣e2

√
1 + a2eitan

−1adu

≼ 2θ1(x, y)e
2d(x, y).
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Similarly,

e2nθn1 (x, y)
2n

n!
=


109, if n = 2
1987, if n = 4
1.31, if n = 37
0.53, if n = 38.

By a routine calculation, we get

d(Tnx, Tny) ≼ e2nθn1 (x, y)
2n

n!
d(x, y).

Thus, for θ1(x, y) = 0.53, θ2(x, y) = 0, n = 38, all the conditions of Theorem 3.4 are
satisfied and so T has a unique fixed point, which is the unique solution of the integral
equation:

x(t) = 4 +

∫ t

1
(x(u) + u2)eu−1du, t ∈ [1, 3],

or the differential equation:

dx

dt
= (x+ t2)et−1, t ∈ [1, 3], x(1) = 4.
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