Some notes on complex symmetric operators

Marcos S. Ferreira
Communicated by Sergey Astashkin

Abstract

In this paper we show that every conjugation C on the Hardy-Hilbert space H^{2} is of type $C=T^{*} \mathcal{J} T$, where T is an unitary operator and $\mathcal{J} f(z)=\overline{f(\bar{z})}$ with $f \in H^{2}$. Moreover we prove some relations of complex symmetry between the operators T and $|T|$, where $T=U|T|$ is the polar decomposition of bounded operator $T \in \mathcal{L}(\mathcal{H})$ on the separable Hilbert space \mathcal{H}.

Keywords. Hardy space, Toeplitz operator, complex symmetric operator, Aluthge transform.

2020 Mathematics Subject Classification. 46C99, 47B99.

1 Introduction

Let $\mathcal{L}(\mathcal{H})$ be the space of bounded linear operators on a separable Hilbert space \mathcal{H}. A conjugation C on \mathcal{H} is an antilinear operator $C: \mathcal{H} \rightarrow \mathcal{H}$ such that $C^{2}=I$ and $\langle C f, C g\rangle=\langle g, f\rangle$, for all $f, g \in \mathcal{H}$. An operator $T \in \mathcal{L}(H)$ is said to be complex symmetric if there exists a conjugation C on H such that $C T=T^{*} C$ (we will often say that T is C-symmetric). Complex symmetric operators generalize the concept of symmetric matrices of linear algebra. Indeed, it is well known ([5, Lemma 1]) that given a conjugation C, there exists an orthonormal basis $\left\{f_{n}\right\}_{n=0}^{\infty}$ for \mathcal{H} such that $C f_{n}=f_{n}$. Hence, if T is C-symmetric then

$$
\begin{equation*}
\left\langle T f_{n}, f_{m}\right\rangle=\left\langle C f_{m}, C T f_{n}\right\rangle=\left\langle f_{m}, T^{*} C f_{n}\right\rangle=\left\langle T f_{m}, f_{n}\right\rangle \tag{1}
\end{equation*}
$$

that is, T has a symmetric matrix representation. The converse result is also true. That is, if there is an orthonormal basis such that T has a symmetric matrix representation, then T is complex symmetric.

The complex symmetric operators class was initially addressed by Garcia and Putinar [5, 6] and includes the normal operators, Hankel operators and Volterra integration operators.

Now, let L^{2} be the Hilbert space on the unit circle \mathbb{T} and let L^{∞} be the Banach space of all essentially bounded functions on \mathbb{T}. It is known that $\left\{e^{i n \theta}: n \in \mathbb{Z}\right\}$
is an orthonormal basis for L^{2}. The Hardy-Hilbert space, denoted by H^{2}, consists of all analytic functions $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ on the unit disk \mathbb{D} such that $\sum_{n=0}^{\infty}\left|a_{n}\right|^{2}<\infty$. It is clear that $\left\{z^{n}: n=0,1,2, \ldots\right\}$ is an orthonormal basis for H^{2}.

For each $\phi \in L^{\infty}$, the Toeplitz operator $T_{\phi}: H^{2} \rightarrow H^{2}$ is defined by

$$
T_{\phi} f=P(\phi f)
$$

for each $f \in H^{2}$, where $P: L^{2} \rightarrow H^{2}$ is the orthogonal projection. The concept of Toeplitz operators was initiated by Brown and Halmos [1] and generalizes the concept of Toeplitz matrices.

In [7], Guo and Zhu raised the question of characterizing complex symmetric Toeplitz operators on H^{2} in the unit disk. In order to obtain such characterization, Ko and Lee [8] introduced the family of conjugations $C_{\lambda}: H^{2} \rightarrow H^{2}$, given by

$$
C_{\lambda} f(z)=\overline{f(\lambda \bar{z})}
$$

with $\lambda \in \mathbb{T}$ and proved the following result:

Theorem 1.1. Let $\phi(z)=\sum_{n=-\infty}^{\infty} \widehat{\phi}(n) z^{n} \in L^{\infty}$. Then T_{ϕ} is C_{λ}-symmetric if, and only if, $\widehat{\phi}(-n)=\lambda^{n} \widehat{\phi}(n)$, for all $n \in \mathbb{Z}$.

2 Canonical conjugations

Our first objective in this paper is to study relations between an arbitrary conjugation C on H^{2} and the conjugation $\mathcal{J} f(z)=\overline{f(\bar{z})}$. Once the conjugation \mathcal{J} is a kind of canonical conjugation on H^{2}, we observe a close relationship between conjugations of H^{2} and conjugation \mathcal{J}, namely:

Theorem 2.1. If C is an conjugation on H^{2}, then exists an unitary operator T : $H^{2} \rightarrow H^{2}$ such that $T C=\mathcal{J} T$.

Proof. Since C is an conjugation, there exists an orthonormal basis $\left\{f_{n}\right\}_{n=0}^{\infty}$ of H^{2} such that $C f_{n}=f_{n}$. Now, let $\left\{z^{n}\right\}_{n=0}^{\infty}$ the standard orthonormal basis of H^{2} and the linear isomorphism $T: H^{2} \rightarrow H^{2}$ given by

$$
T\left(\sum_{n=0}^{\infty} a_{n} f_{n}\right)=\sum_{n=0}^{\infty} a_{n} z^{n} .
$$

Note that $T f_{n}=z^{n}$, for all $n \geq 0$, and therefore T is unitary. Now, for $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n} \in H^{2}$, we get

$$
\begin{aligned}
\mathcal{J} f(z) & =\sum_{n=0}^{\infty} \overline{a_{n}} T\left(f_{n}\right) \\
& =T\left(\sum_{n=0}^{\infty} \overline{a_{n}} C f_{n}\right) \\
& =\left(T C T^{-1}\right) f(z)
\end{aligned}
$$

whence $\mathcal{J} T=T C$.
The previous theorem says that all complex symmetric Toeplitz operator is unitarily equivalent to a \mathcal{J}-symmetric operator. Indeed, we have:

Remark 2.2. Let $T_{\phi}: H^{2} \rightarrow H^{2}$ an Toeplitz operator. Observe that, if T_{ϕ} is C-symmetric, since the operator T of previous theorem is unitary, we have

$$
\mathcal{J}=T C T^{*}
$$

therefore the operator $T_{2}=T T_{\phi} T^{*}$ is \mathcal{J}-symmetric (see [5, p. 1291]). This shows that T_{ϕ} and T_{2} are unitarily equivalent operators. Moreover, is obvious that, if T commutes with \mathcal{J} or C, then $C=\mathcal{J}$.

The converse of the Theorem 2.1 is true and your proof is immediate.
Proposition 2.3. If $T: H^{2} \rightarrow H^{2}$ is an unitary operator, then $C=T^{-1} \mathcal{J} T$ is an conjugation on H^{2}.

In short, the Theorem 2.1 and Proposition 2.3 tell us that:
Corollary 2.4. If $T: H^{2} \rightarrow H^{2}$ an linear isomorphism and $C=T^{-1} \mathcal{J} T$, then T is unitary if, and only if, C is a conjugation on H^{2}.

We already know that every normal operator is complex symmetric and that the reciprocal in general is not true. However, for Toeplitz operators, by Theorem 1.1 we have that if T_{ϕ} is \mathcal{J}-symmetric, then T_{ϕ} is normal. Now note that if T_{ϕ} is normal not necessarily T_{ϕ} is \mathcal{J}-symmetric. In fact, if $\phi(z)=-\bar{z}+z$ then T_{ϕ} is normal, however is not \mathcal{J}-symmetric.

Matrix of operators \mathcal{J}-symmetric on H^{2} are quite simple to determine. The proof of the next result is left to the reader.

Proposition 2.5. Let $A \in \mathcal{L}\left(H^{2}\right)$. Then A is \mathcal{J}-symmetric if, and only if, the matrix of A with respect the canonical basis of H^{2} is symmetric.

3 Properties of complex symmetry

In the following, we present some properties of complex symmetry in Hilbert spaces. The first result gives us a way to get complex symmetric operators from another complex symmetric operator. First, we need some lemmas:

Lemma 3.1. ([6, Lemma 1]) If C and J are conjugations on a Hilbert space \mathcal{H}, then $U=C J$ is a unitary operator. Moreover, U is both C-symmetric and J symmetric.

Lemma 3.2. ([3, Lemma 2.2]) If $U: \mathcal{H} \rightarrow \mathcal{H}$ is a unitary and complex symmetric operator with conjugation C, then $U C$ is a conjugation.

Proposition 3.3. Let $T: \mathcal{H} \rightarrow \mathcal{H}$ an operator and C and J conjugations on \mathcal{H}. Then T is C-symmetric if, and only if, $U T$ is $U C$-symmetric, where $U=C J$.

Proof. We already know that U is unitary and C and J-symmetric and that $U C=$ $C J C$ is a conjugation, by Lemmas 3.1 and 3.2. Now since $U^{*}=U^{-1}=J C$ and T is C-symmetric, we have

$$
U T(U C)=U T C U^{*}=U C T^{*} U^{*}=U C(U T)^{*}
$$

Reciprocally, suppose that $U C(U T)^{*}=U T(U C)$. Thus

$$
\begin{aligned}
C T^{*} U^{*} & =C(U T)^{*} \\
& =U^{*} U C(U T)^{*} \\
& =U^{*} U T U C \\
& =T U C \\
& =T C U^{*},
\end{aligned}
$$

whence $C T^{*}=T C$.
Lemma 3.4. If $T: \mathcal{H} \rightarrow \mathcal{H}$ is both C-symmetric and J-symmetric, then T is both CJC-symmetric and JCJ-symmetric.

Proof. By Lemma 3.1, we have that $U:=C J$ is unitary and C and J-symmetric. Hence, by Lemma 3.2, $U C=C J C$ is a conjugation on \mathcal{H}. Thus, since $C T=$ $T^{*} C$ and $J T=T^{*} J$ we get

$$
(C J C) T=C(T J) C=T^{*}(C J C)
$$

and so T is $C J C$-symmetric. Analogous, we prove that T is $J C J$-symmetric.

Proposition 3.5. If $T: \mathcal{H} \rightarrow \mathcal{H}$ is both C and J-symmetric, then $T U$ is C symmetric, where $U=C J$.

Proof. In fact, once T is both C-symmetric and J-symmetric, we have by Lemma 3.4 that T is $C J C$-symmetric and so

$$
(T U) C=T(C J C)=C U^{*} T^{*}=C(T U)^{*}
$$

Proposition 3.6. An operator $T: \mathcal{H} \rightarrow \mathcal{H}$ is C-symmetric if, and only if, $\mathcal{J} T^{*} C=$ $(C \mathcal{J})^{*} T$, where $\mathcal{J}\left(\sum_{n=0}^{\infty} \alpha_{n} f_{n}\right)=\sum_{n=0}^{\infty} \overline{\alpha_{n}} f_{n}$ and $\left\{f_{n}\right\}_{n=0}^{\infty}$ is a orthonormal basis for \mathcal{H}.

Proof. We already know that $U=C \mathcal{J}$ is unitary and both C and \mathcal{J}-symmetric. Now, note that

$$
\mathcal{J} T^{*} C=(C \mathcal{J})^{*} T \Leftrightarrow U T^{*} C=C U^{*} T
$$

First see that if T is C-symmetric, then $U T^{*} C=U(C T)=\left(C U^{*}\right) T$. Reciprocally, we have

$$
\begin{aligned}
C T^{*} & =C U^{*}\left(U T^{*} C\right) C \\
& =C U^{*}\left(C U^{*} T\right) C \\
& =\left(U C C U^{*}\right) T C \\
& =T C .
\end{aligned}
$$

We end this section with two properties of complex symmetry which we leave the proof to the reader.

Proposition 3.7. Let $U: \mathcal{H} \rightarrow \mathcal{H}$ an unitary operator J-symmetric. If T is an operator such that $U T^{*}=T U$ then:
(i) $J T^{*}=T^{*} J \Leftrightarrow T$ is $U J$-symmetric.
(ii) $U J T=T J U^{*} \Leftrightarrow T$ is J-symmetric.

4 Complex symmetry of Aluthge and Duggal transforms

Recall that the polar decomposition of an operator $T: \mathcal{H} \rightarrow \mathcal{H}$ is uniquely expressed by $T=U|T|$, where $|T|=\sqrt{T^{*} T}$ is a positive operator and U is a partial isometry such that $\operatorname{Ker}(U)=\operatorname{Ker}|U|$ and U maps $\operatorname{cl}(\operatorname{Ran}|T|)$ onto
$\operatorname{cl}(\operatorname{Ran}(T))$. In this case, the Aluthge and Duggal Transforms are given, respectively, by $\widetilde{T}=|T|^{\frac{1}{2}} U|T|^{\frac{1}{2}}$ and $\widehat{T}=|T| U$.

We already known that the Aluthge transform of a complex symmetric operator is also complex symmetric (see [4, Theorem 1]). In this section we study relations between complex symmetry of T and $|T|$ with relation the conjugations C and J, as well as the operators \widetilde{T} and \widehat{T}.

Proposition 4.1. If T is complex symmetric, then $|T|$ is also complex symmetric.
Proof. If $C T=T^{*} C$, we have by Remark of [4, Lemma 1] that $T=C J|T|$, where J commutes with $|T|$. Thus, once that $C J$ is a unitary operator, follows that

$$
J|T|=C(C J|T|)=|T|^{*}(C J)^{*} C=|T|^{*} J
$$

Corollary 4.2. If T is complex symmetric, then $|T|$ is self-adjoint.

Proposition 4.3. Let C and J conjugations on \mathcal{H} such that $T=C J|T|$. If $|T|$ is C-symmetric, then T is also C-symmetric.

Proof. First, let's show that $|T|$ is J-symmetric. In fact, see that

$$
J(J C|T|)=C|T|=|T|^{*} C=\left(|T|^{*} C J\right) J
$$

and so $J C|T|$ is J-symmetric. Thus, by Proposition $3.3,|T|$ is J-symmetric. Therefore, it is enough to see that:

$$
\begin{aligned}
C T & =C(C J|T|) \\
& =|T|^{*} J \\
& =\left(|T|^{*} J C\right) C \\
& =(C J|T|)^{*} C \\
& =T^{*} C .
\end{aligned}
$$

Corollary 4.4. Let $T=C J|T|$. If $|T|$ is C-symmetric, then $\widehat{T}=T$.
Corollary 4.5. Let $T=C J|T|$. Then $|T|$ is C-symmetric if, and only if, \widehat{T} is J-symmetric.

Proposition 4.6. Let $T=C J|T|$. If $C|T|=|T|^{*} C$ and $C J=J C$, then T is J-symmetric.

Proof. In fact, we have that

$$
\begin{aligned}
J T & =J(C J|T|) \\
& =C|T| \\
& =|T|^{*} J J C \\
& =|T|^{*} J C J \\
& =(C J|T|)^{*} J \\
& =T^{*} J .
\end{aligned}
$$

Bibliography

[1] A. Brown and P.R. Halmos, Algebraic properties of Toeplitz operators, J.Reine Angew. Math. 213 (1963-1964), 89-102.
[2] R. G. Douglas, Banach Algebra Techniques in Operator Theory, second ed., Graduate Texts in Mathematics, vol. 179, Springer-Verlag, New York, 1998.
[3] M. Fatehi, Complex symmetric weighted composition operators, Complex Variables and Elliptic Equations 64 (2019), 710-720.
[4] S. R. Garcia, Aluthge transforms of complex symmetric operators, Integr. Equ. Oper. Theory. (2008), 1-11.
[5] S.R. Garcia and M. Putinar, Complex symmetric operators and applications, Trans. Amer. Math. Soc. 358 (2006), 1285-1315.
[6] S.R. Garcia and M. Putinar, Complex symmetric operators and applications II, Trans. Amer. Math. Soc. 359 (2007), 3913-3931.
[7] K. Guo and S. Zhu, A canonical decomposition of complex symmetric operators, J. Operator Theory 72 (2014), 529-547.
[8] E. Ko and J. Lee, On complex symmetric Toeplitz operators, J. Math. Anal. Appl. 434 (2016), 20-34.

Received November 11, 2020; revised January 13, 2021; accepted November 21, 2021.

Author information

Marcos S. Ferreira, Departamento de Ciências Exatas e Tecnológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brasil.
E-mail: msferreira@uesc.br

