Some notes on complex symmetric operators

Marcos S. Ferreira

Communicated by Sergey Astashkin

Abstract. In this paper we show that every conjugation C on the Hardy-Hilbert space H^2 is of type $C = T^* \mathcal{J}T$, where T is an unitary operator and $\mathcal{J}f(z) = \overline{f(z)}$ with $f \in H^2$. Moreover we prove some relations of complex symmetry between the operators T and |T|, where T = U |T| is the polar decomposition of bounded operator $T \in \mathcal{L}(\mathcal{H})$ on the separable Hilbert space \mathcal{H} .

Keywords. Hardy space, Toeplitz operator, complex symmetric operator, Aluthge transform.

2020 Mathematics Subject Classification. 46C99, 47B99.

1 Introduction

Let $\mathcal{L}(\mathcal{H})$ be the space of bounded linear operators on a separable Hilbert space \mathcal{H} . A conjugation C on \mathcal{H} is an antilinear operator $C : \mathcal{H} \to \mathcal{H}$ such that $C^2 = I$ and $\langle Cf, Cg \rangle = \langle g, f \rangle$, for all $f, g \in \mathcal{H}$. An operator $T \in \mathcal{L}(\mathcal{H})$ is said to be complex symmetric if there exists a conjugation C on \mathcal{H} such that $CT = T^*C$ (we will often say that T is C-symmetric). Complex symmetric operators generalize the concept of symmetric matrices of linear algebra. Indeed, it is well known ([5, Lemma 1]) that given a conjugation C, there exists an orthonormal basis $\{f_n\}_{n=0}^{\infty}$ for \mathcal{H} such that $Cf_n = f_n$. Hence, if T is C-symmetric then

$$\langle Tf_n, f_m \rangle = \langle Cf_m, CTf_n \rangle = \langle f_m, T^*Cf_n \rangle = \langle Tf_m, f_n \rangle, \qquad (1)$$

that is, T has a symmetric matrix representation. The converse result is also true. That is, if there is an orthonormal basis such that T has a symmetric matrix representation, then T is complex symmetric.

The complex symmetric operators class was initially addressed by Garcia and Putinar [5, 6] and includes the normal operators, Hankel operators and Volterra integration operators.

Now, let L^2 be the Hilbert space on the unit circle \mathbb{T} and let L^{∞} be the Banach space of all essentially bounded functions on \mathbb{T} . It is known that $\{e^{in\theta} : n \in \mathbb{Z}\}$

is an orthonormal basis for L^2 . The *Hardy-Hilbert space*, denoted by H^2 , consists of all analytic functions $f(z) = \sum_{n=0}^{\infty} a_n z^n$ on the unit disk \mathbb{D} such that $\sum_{n=0}^{\infty} |a_n|^2 < \infty$. It is clear that $\{z^n : n = 0, 1, 2, \ldots\}$ is an orthonormal basis for H^2 .

For each $\phi \in L^{\infty}$, the *Toeplitz operator* $T_{\phi} : H^2 \to H^2$ is defined by

$$T_{\phi}f = P\left(\phi f\right),$$

for each $f \in H^2$, where $P : L^2 \to H^2$ is the orthogonal projection. The concept of Toeplitz operators was initiated by Brown and Halmos [1] and generalizes the concept of Toeplitz matrices.

In [7], Guo and Zhu raised the question of characterizing complex symmetric Toeplitz operators on H^2 in the unit disk. In order to obtain such characterization, Ko and Lee [8] introduced the family of conjugations $C_{\lambda} : H^2 \to H^2$, given by

$$C_{\lambda}f\left(z\right) = \overline{f\left(\lambda\overline{z}\right)}$$

with $\lambda \in \mathbb{T}$ and proved the following result:

Theorem 1.1. Let $\phi(z) = \sum_{n=-\infty}^{\infty} \widehat{\phi}(n) z^n \in L^{\infty}$. Then T_{ϕ} is C_{λ} -symmetric if, and only if, $\widehat{\phi}(-n) = \lambda^n \widehat{\phi}(n)$, for all $n \in \mathbb{Z}$.

2 Canonical conjugations

Our first objective in this paper is to study relations between an arbitrary conjugation C on H^2 and the conjugation $\mathcal{J}f(z) = \overline{f(\overline{z})}$. Once the conjugation \mathcal{J} is a kind of canonical conjugation on H^2 , we observe a close relationship between conjugations of H^2 and conjugation \mathcal{J} , namely:

Theorem 2.1. If C is an conjugation on H^2 , then exists an unitary operator $T : H^2 \to H^2$ such that $TC = \mathcal{J}T$.

Proof. Since C is an conjugation, there exists an orthonormal basis $\{f_n\}_{n=0}^{\infty}$ of H^2 such that $Cf_n = f_n$. Now, let $\{z^n\}_{n=0}^{\infty}$ the standard orthonormal basis of H^2 and the linear isomorphism $T: H^2 \to H^2$ given by

$$T\left(\sum_{n=0}^{\infty}a_nf_n\right) = \sum_{n=0}^{\infty}a_nz^n.$$

Note that $Tf_n = z^n$, for all $n \ge 0$, and therefore T is unitary. Now, for $f(z) = \sum_{n=0}^{\infty} a_n z^n \in H^2$, we get

$$\mathcal{J}f(z) = \sum_{n=0}^{\infty} \overline{a_n} T(f_n)$$
$$= T\left(\sum_{n=0}^{\infty} \overline{a_n} Cf_n\right)$$
$$= (TCT^{-1}) f(z),$$

whence $\mathcal{J}T = TC$.

The previous theorem says that all complex symmetric Toeplitz operator is unitarily equivalent to a \mathcal{J} -symmetric operator. Indeed, we have:

Remark 2.2. Let $T_{\phi}: H^2 \to H^2$ an Toeplitz operator. Observe that, if T_{ϕ} is *C*-symmetric, since the operator *T* of previous theorem is unitary, we have

$$\mathcal{J} = TCT^*,$$

therefore the operator $T_2 = TT_{\phi}T^*$ is \mathcal{J} -symmetric (see [5, p. 1291]). This shows that T_{ϕ} and T_2 are unitarily equivalent operators. Moreover, is obvious that, if Tcommutes with \mathcal{J} or C, then $C = \mathcal{J}$.

The converse of the Theorem 2.1 is true and your proof is immediate.

Proposition 2.3. If $T : H^2 \to H^2$ is an unitary operator, then $C = T^{-1}\mathcal{J}T$ is an conjugation on H^2 .

In short, the Theorem 2.1 and Proposition 2.3 tell us that:

Corollary 2.4. If $T : H^2 \to H^2$ an linear isomorphism and $C = T^{-1}\mathcal{J}T$, then T is unitary if, and only if, C is a conjugation on H^2 .

We already know that every normal operator is complex symmetric and that the reciprocal in general is not true. However, for Toeplitz operators, by Theorem 1.1 we have that if T_{ϕ} is \mathcal{J} -symmetric, then T_{ϕ} is normal. Now note that if T_{ϕ} is normal not necessarily T_{ϕ} is \mathcal{J} -symmetric. In fact, if $\phi(z) = -\overline{z} + z$ then T_{ϕ} is normal, however is not \mathcal{J} -symmetric.

Matrix of operators \mathcal{J} -symmetric on H^2 are quite simple to determine. The proof of the next result is left to the reader.

Proposition 2.5. Let $A \in \mathcal{L}(H^2)$. Then A is \mathcal{J} -symmetric if, and only if, the matrix of A with respect the canonical basis of H^2 is symmetric.

3 Properties of complex symmetry

In the following, we present some properties of complex symmetry in Hilbert spaces. The first result gives us a way to get complex symmetric operators from another complex symmetric operator. First, we need some lemmas:

Lemma 3.1. ([6, Lemma 1]) If C and J are conjugations on a Hilbert space \mathcal{H} , then U = CJ is a unitary operator. Moreover, U is both C-symmetric and J-symmetric.

Lemma 3.2. ([3, Lemma 2.2]) If $U : \mathcal{H} \to \mathcal{H}$ is a unitary and complex symmetric operator with conjugation C, then UC is a conjugation.

Proposition 3.3. Let $T : \mathcal{H} \to \mathcal{H}$ an operator and C and J conjugations on \mathcal{H} . Then T is C-symmetric if, and only if, UT is UC-symmetric, where U = CJ.

Proof. We already know that U is unitary and C and J-symmetric and that UC = CJC is a conjugation, by Lemmas 3.1 and 3.2. Now since $U^* = U^{-1} = JC$ and T is C-symmetric, we have

$$UT(UC) = UTCU^* = UCT^*U^* = UC(UT)^*.$$

Reciprocally, suppose that $UC(UT)^* = UT(UC)$. Thus

$$CT^*U^* = C(UT)^*$$

= $U^*UC(UT)^*$
= U^*UTUC
= TUC
= TCU^* ,

whence $CT^* = TC$.

Lemma 3.4. If $T : \mathcal{H} \to \mathcal{H}$ is both *C*-symmetric and *J*-symmetric, then *T* is both *CJC*-symmetric and *JCJ*-symmetric.

Proof. By Lemma 3.1, we have that U := CJ is unitary and C and J-symmetric. Hence, by Lemma 3.2, UC = CJC is a conjugation on \mathcal{H} . Thus, since $CT = T^*C$ and $JT = T^*J$ we get

$$(CJC) T = C (TJ) C = T^* (CJC),$$

and so T is CJC-symmetric. Analogous, we prove that T is JCJ-symmetric. \Box

Proposition 3.5. If $T : \mathcal{H} \to \mathcal{H}$ is both C and J-symmetric, then TU is C-symmetric, where U = CJ.

Proof. In fact, once T is both C-symmetric and J-symmetric, we have by Lemma 3.4 that T is CJC-symmetric and so

$$(TU) C = T (CJC) = CU^*T^* = C (TU)^*.$$

Proposition 3.6. An operator $T : \mathcal{H} \to \mathcal{H}$ is *C*-symmetric if, and only if, $\mathcal{J}T^*C = (C\mathcal{J})^*T$, where $\mathcal{J}(\sum_{n=0}^{\infty} \alpha_n f_n) = \sum_{n=0}^{\infty} \overline{\alpha_n} f_n$ and $\{f_n\}_{n=0}^{\infty}$ is a orthonormal basis for \mathcal{H} .

Proof. We already know that $U = C\mathcal{J}$ is unitary and both C and \mathcal{J} -symmetric. Now, note that

 $\mathcal{J}T^*C = (C\mathcal{J})^*T \Leftrightarrow UT^*C = CU^*T.$

First see that if T is C-symmetric, then $UT^*C = U(CT) = (CU^*)T$. Reciprocally, we have

$$CT^* = CU^*(UT^*C)C$$

= $CU^*(CU^*T)C$
= $(UCCU^*)TC$
= $TC.$

П

We end this section with two properties of complex symmetry which we leave the proof to the reader.

Proposition 3.7. Let $U : \mathcal{H} \to \mathcal{H}$ an unitary operator J-symmetric. If T is an operator such that $UT^* = TU$ then: (i) $JT^* = T^*J \Leftrightarrow T$ is UJ-symmetric. (ii) $UJT = TJU^* \Leftrightarrow T$ is J-symmetric.

4 Complex symmetry of Aluthge and Duggal transforms

Recall that the polar decomposition of an operator $T : \mathcal{H} \to \mathcal{H}$ is uniquely expressed by T = U|T|, where $|T| = \sqrt{T^*T}$ is a positive operator and U is a partial isometry such that Ker(U) = Ker|U| and U maps cl(Ran|T|) onto cl(Ran(T)). In this case, the Aluthge and Duggal Transforms are given, respectively, by $\widetilde{T} = |T|^{\frac{1}{2}} U |T|^{\frac{1}{2}}$ and $\widehat{T} = |T| U$.

We already known that the Aluthge transform of a complex symmetric operator is also complex symmetric (see [4, Theorem 1]). In this section we study relations between complex symmetry of T and |T| with relation the conjugations C and J, as well as the operators \tilde{T} and \hat{T} .

Proposition 4.1. If T is complex symmetric, then |T| is also complex symmetric.

Proof. If $CT = T^*C$, we have by Remark of [4, Lemma 1] that T = CJ |T|, where J commutes with |T|. Thus, once that CJ is a unitary operator, follows that

$$J|T| = C(CJ|T|) = |T|^* (CJ)^* C = |T|^* J.$$

Corollary 4.2. If T is complex symmetric, then |T| is self-adjoint.

Proposition 4.3. Let C and J conjugations on \mathcal{H} such that T = CJ |T|. If |T| is C-symmetric, then T is also C-symmetric.

Proof. First, let's show that |T| is J-symmetric. In fact, see that

$$J(JC|T|) = C|T| = |T|^* C = (|T|^* CJ)J,$$

and so JC |T| is J-symmetric. Thus, by Proposition 3.3, |T| is J-symmetric. Therefore, it is enough to see that:

$$CT = C(CJ |T|) = |T|^* J = (|T|^* JC)C = (CJ |T|)^*C = T^*C.$$

-		
L		
L		

Corollary 4.4. Let T = CJ |T|. If |T| is C-symmetric, then $\hat{T} = T$.

Corollary 4.5. Let T = CJ|T|. Then |T| is C-symmetric if, and only if, \hat{T} is J-symmetric.

Proposition 4.6. Let T = CJ |T|. If $C |T| = |T|^* C$ and CJ = JC, then T is *J*-symmetric.

Proof. In fact, we have that

$$\begin{aligned} TT &= J(CJ |T|) \\ &= C |T| \\ &= |T|^* JJC \\ &= |T|^* JCJ \\ &= (CJ |T|)^* J \\ &= T^* J. \end{aligned}$$

-			
I			
I			
	-	-	

Bibliography

- A. Brown and P.R. Halmos, Algebraic properties of Toeplitz operators, *J.Reine Angew. Math.* 213 (1963–1964), 89–102.
- [2] R. G. Douglas, Banach Algebra Techniques in Operator Theory, second ed., Graduate Texts in Mathematics, vol. 179, Springer-Verlag, New York, 1998.
- [3] M. Fatehi, Complex symmetric weighted composition operators, *Complex Variables and Elliptic Equations* 64 (2019), 710-720.
- [4] S. R. Garcia, Aluthge transforms of complex symmetric operators, *Integr. Equ. Oper. Theory.* (2008), 1-11.
- [5] S.R. Garcia and M. Putinar, Complex symmetric operators and applications, *Trans. Amer. Math. Soc.* 358 (2006), 1285-1315.
- [6] S.R. Garcia and M. Putinar, Complex symmetric operators and applications II, *Trans. Amer. Math. Soc.* 359 (2007), 3913-3931.
- [7] K. Guo and S. Zhu, A canonical decomposition of complex symmetric operators, J. Operator Theory 72 (2014), 529-547.
- [8] E. Ko and J. Lee, On complex symmetric Toeplitz operators, J. Math. Anal. Appl. 434 (2016), 20-34.

Received November 11, 2020; revised January 13, 2021; accepted November 21, 2021.

Author information

Marcos S. Ferreira, Departamento de Ciências Exatas e Tecnológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brasil. E-mail: msferreira@uesc.br