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Abstract. In this paper we show that every conjugation C' on the Hardy-Hilbert space H?
is of type C' = T*JT, where T is an unitary operator and J f (z) = f () with f € H.
Moreover we prove some relations of complex symmetry between the operators 7' and
|T|, where T = U |T| is the polar decomposition of bounded operator T € £ (#) on the
separable Hilbert space .
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1 Introduction

Let £ (H) be the space of bounded linear operators on a separable Hilbert space
H. A conjugation C on H is an antilinear operator C' : H — H such that C? = T
and (Cf,Cgqg) = (g, f), forall f,g € H. An operator T € L (H) is said to be
complex symmetric if there exists a conjugation C on H such that CT = T*C' (we
will often say that 7" is C-symmetric). Complex symmetric operators generalize
the concept of symmetric matrices of linear algebra. Indeed, it is well known ([5,
Lemma 1]) that given a conjugation C, there exists an orthonormal basis { f },~
for H such that C'f,, = f,. Hence, if T' is C-symmetric then

<Tfn>fm> = <Cfm7CTfn> = <fmaT*Cfn> = <Tfmafn>; (1)

that is, 7" has a symmetric matrix representation. The converse result is also true.
That is, if there is an orthonormal basis such that 7" has a symmetric matrix repre-
sentation, then 7" is complex symmetric.

The complex symmetric operators class was initially addressed by Garcia and
Putinar [5, 6] and includes the normal operators, Hankel operators and Volterra
integration operators.

Now, let L? be the Hilbert space on the unit circle T and let L> be the Banach
space of all essentially bounded functions on T. It is known that {eme 'n € Z}
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is an orthonormal basis for L2. The Hardy-Hilbert space, denoted by H 2 con-
sists of all analytic functions f(z) = > .7 a,z" on the unit disk I such that
> lan|* < oco. Itis clear that {z" : n = 0,1,2,...} is an orthonormal basis
for H?.

For each ¢ € L, the Toeplitz operator Ty : H*> — H? is defined by

Tyf =P (of),

for each f € H?, where P : L?> — H? is the orthogonal projection. The concept
of Toeplitz operators was initiated by Brown and Halmos [1] and generalizes the
concept of Toeplitz matrices.

In [7], Guo and Zhu raised the question of characterizing complex symmetric
Toeplitz operators on H? in the unit disk. In order to obtain such characterization,
Ko and Lee [8] introduced the family of conjugations Cy : H> — H?, given by

Cxf(z) = f (Az)

with A € T and proved the following result:

~

Theorem 1.1. Let ¢(z) = > o2 ¢(n)z™ € L. Then T, is C\-symmetric if,

n=—oo

and only if, (Z(—n) = )\”g/b\(n),for alln € Z.

2 Canonical conjugations

Our first objective in this paper is to study relations between an arbitrary conju-
gation C' on H? and the conjugation 7 f (z) = f (Z). Once the conjugation 7 is
a kind of canonical conjugation on H?, we observe a close relationship between
conjugations of H? and conjugation 7, namely:

Theorem 2.1. If C is an conjugation on H?, then exists an unitary operator T :
H? = H? such that TC = JT.

Proof. Since C' is an conjugation, there exists an orthonormal basis { f,, },— of
H? such that C'f,, = f,,. Now, let {2"}°°; the standard orthonormal basis of H>
and the linear isomorphism 7" : H> — H? given by

T <§: anfn> = i anz".
n=0 n=0
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Note that T'f,, = 2™, for all n > 0, and therefore T is unitary. Now, for
f(2) =302 ganz" € H?, we get

Jf(z)

> @ T (fn)
n=0

T (fj aHCfn>
n=0

= (TCT ") f(2),
whence JT = TC. O

The previous theorem says that all complex symmetric Toeplitz operator is uni-
tarily equivalent to a 7 -symmetric operator. Indeed, we have:

Remark 2.2.Let T, : H 2 — H? an Toeplitz operator. Observe that, if Ty is
C-symmetric, since the operator 7" of previous theorem is unitary, we have

J =TCT*,

therefore the operator 75 = TT,T™ is J-symmetric (see [5, p. 1291]). This shows
that T4 and 75 are unitarily equivalent operators. Moreover, is obvious that, if T
commutes with 7 or C, then C = 7.

The converse of the Theorem 2.1 is true and your proof is immediate.

Proposition 2.3. If T : H> — H? is an unitary operator, then C = T~ ' JT is an
conjugation on H>.

In short, the Theorem 2.1 and Proposition 2.3 tell us that:

Corollary 2.4. If T : H> — H? an linear isomorphism and C = T~ JT, then T
is unitary if, and only if. C' is a conjugation on H>.

We already know that every normal operator is complex symmetric and that the
reciprocal in general is not true. However, for Toeplitz operators, by Theorem 1.1
we have that if T is J-symmetric, then T is normal. Now note that if T is
normal not necessarily T is J-symmetric. In fact, if ¢(z) = —Z + z then T}, is
normal, however is not [J-symmetric.

Matrix of operators J-symmetric on H? are quite simple to determine. The
proof of the next result is left to the reader.

Proposition 2.5. Let A € L (H 2) . Then A is J-symmetric if, and only if, the
matrix of A with respect the canonical basis of H? is symmetric.
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3 Properties of complex symmetry

In the following, we present some properties of complex symmetry in Hilbert
spaces. The first result gives us a way to get complex symmetric operators from
another complex symmetric operator. First, we need some lemmas:

Lemma 3.1. ([6, Lemma 1]) If C and J are conjugations on a Hilbert space H,
then U = C'J is a unitary operator. Moreover, U is both C-symmetric and J-
symmetric.

Lemma 3.2. ([3, Lemma 2.2]) If U : H — H is a unitary and complex symmetric
operator with conjugation C, then UC'is a conjugation.

Proposition 3.3. Let T' : H — H an operator and C' and J conjugations on H.
Then T is C-symmetric if, and only if, UT is UC-symmetric, where U = C'J.

Proof. We already know that U is unitary and C and J-symmetric and that UC' =
C.JC is a conjugation, by Lemmas 3.1 and 3.2. Now since U* = U~! = JC and
T is C-symmetric, we have

UT (UC) = UTCU* = UCT*U* = UC(UT)*.
Reciprocally, suppose that UC(UT)* = UT(UC'). Thus

cT*ur

c(UT)*

= UrUC(UT)*
= UUTUC
- TUC

= TCU*,

whence CT* =TC. o

Lemma 3.4. If T : H — H is both C-symmetric and J-symmetric, then T is both
CJC-symmetric and JC J-symmetric.

Proof. By Lemma 3.1, we have that U := C'J is unitary and C' and J-symmetric.
Hence, by Lemma 3.2, UC' = C'JC' is a conjugation on H. Thus, since CT =
T*C and JT = T*J we get

(CJC)T = C(TJ)C =T* (CJC),

and so 7' is C'JC-symmetric. Analogous, we prove that 7" is JC'J-symmetric. O
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Proposition 3.5. If T' : H — H is both C' and J-symmetric, then TU is C-
symmetric, where U = C'J.

Proof. In fact, once T is both C'-symmetric and J-symmetric, we have by Lemma
3.4 that T'is C'JC-symmetric and so

(TU)C =T (CJC) = CU*T* = C (TU)*.

Proposition 3.6. An operator T : H — H is C-symmetric if, and only if, JT*C =
(CT)'T, where T (3 0" g nfn) = D peo@nfn and { fn},", is a orthonormal
basis for H.

Proof. We already know that U = CJ is unitary and both C' and J-symmetric.
Now, note that
JTr*C =(CI)'T < UT*C =CUT.

First see that if 7" is C-symmetric, then UT*C = U(CT) = (CU*)T. Recipro-
cally, we have
cT* = CUr(UT*C)C
= CUr(CcurT)C
= (uccurnrc
= TC.

[m}

We end this section with two properties of complex symmetry which we leave
the proof to the reader.

Proposition 3.7. Let U : H — H an unitary operator J-symmetric. If T is an
operator such that UT* = TU then:

(i) JT* =T*J < T is UJ—symmetric.

(i) UJT =TJU* & T is J—symmetric.

4 Complex symmetry of Aluthge and Duggal transforms

Recall that the polar decomposition of an operator 7' : ‘H — H is uniquely
expressed by 7" = U |T|, where |T'| = v/T*T is a positive operator and U is
a partial isometry such that Ker(U) = Ker |U| and U maps cl(Ran |T|) onto
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cl(Ran(T)). In this case, the Aluthge and Duggal Transforms are given, respec-
tively, by T = |T|2 U|T|z and T = |T| U.

We already known that the Aluthge transform of a complex symmetric operator
is also complex symmetric (see [4, Theorem 1]). In this section we study relations
between complex symmetry of 7" and |T| with relation the conjugations C' and J,
as well as the operators 7" and T.

Proposition 4.1. If T is complex symmetric, then |T| is also complex symmetric.

Proof. If CT = T*C, we have by Remark of [4, Lemma 1] that T = CJ |T,
where J commutes with |T'|. Thus, once that C'J is a unitary operator, follows
that

J|T|=C(CJ|T))=|T[" (CJ)*C =|T|" J.

Corollary 4.2. If T' is complex symmetric, then |T| is self-adjoint.

Proposition 4.3. Ler C and J conjugations on H such that T = CJ |T|. If |T| is
C-symmetric, then T is also C-symmetric.

Proof. First, let’s show that |T| is J-symmetric. In fact, see that
JUC|T|) = CIT| = |T]"C = (T" CJ)J,

and so JC |T| is J-symmetric. Thus, by Proposition 3.3, |T| is J-symmetric.
Therefore, it is enough to see that:
cCT = C(CJ|T))
= |71 J
= (I11"J0)c
= (cJT)C
= T'C.

Corollary 4.4. Let T = CJ |T|. If |T| is C-symmetric, then T=T.

Corollary 4.5. Let T = CJ|T|. Then |T| is C-symmetric if, and only if, T is
J-symmetric.
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Proposition 4.6. Let T = CJ|T|. If C|T| = |T|"C and CJ = JC, then T is
J-symmetric.

Proof. In fact, we have that

JT = J(CJI|T))
= C|T|
= |T]*JJC
= |T[*JCJT
= (CJ|T|)*J
= T*J.
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