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Abstract. In this paper we show that every conjugation C on the Hardy-Hilbert space H2

is of type C = T ∗J T , where T is an unitary operator and J f (z) = f (z) with f ∈ H2.
Moreover we prove some relations of complex symmetry between the operators T and
|T |, where T = U |T | is the polar decomposition of bounded operator T ∈ L (H) on the
separable Hilbert space H.
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1 Introduction

Let L (H) be the space of bounded linear operators on a separable Hilbert space
H. A conjugation C on H is an antilinear operator C : H → H such that C2 = I
and ⟨Cf,Cg⟩ = ⟨g, f⟩ , for all f, g ∈ H. An operator T ∈ L (H) is said to be
complex symmetric if there exists a conjugation C on H such that CT = T ∗C (we
will often say that T is C-symmetric). Complex symmetric operators generalize
the concept of symmetric matrices of linear algebra. Indeed, it is well known ([5,
Lemma 1]) that given a conjugation C, there exists an orthonormal basis {fn}∞n=0
for H such that Cfn = fn. Hence, if T is C-symmetric then

⟨Tfn, fm⟩ = ⟨Cfm, CTfn⟩ = ⟨fm, T ∗Cfn⟩ = ⟨Tfm, fn⟩ , (1)

that is, T has a symmetric matrix representation. The converse result is also true.
That is, if there is an orthonormal basis such that T has a symmetric matrix repre-
sentation, then T is complex symmetric.

The complex symmetric operators class was initially addressed by Garcia and
Putinar [5, 6] and includes the normal operators, Hankel operators and Volterra
integration operators.

Now, let L2 be the Hilbert space on the unit circle T and let L∞ be the Banach
space of all essentially bounded functions on T. It is known that

{
einθ : n ∈ Z

}
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is an orthonormal basis for L2. The Hardy-Hilbert space, denoted by H2, con-
sists of all analytic functions f (z) =

∑∞
n=0 anz

n on the unit disk D such that∑∞
n=0 |an|

2 < ∞. It is clear that {zn : n = 0, 1, 2, . . .} is an orthonormal basis
for H2.

For each ϕ ∈ L∞, the Toeplitz operator Tϕ : H2 → H2 is defined by

Tϕf = P (ϕf) ,

for each f ∈ H2, where P : L2 → H2 is the orthogonal projection. The concept
of Toeplitz operators was initiated by Brown and Halmos [1] and generalizes the
concept of Toeplitz matrices.

In [7], Guo and Zhu raised the question of characterizing complex symmetric
Toeplitz operators on H2 in the unit disk. In order to obtain such characterization,
Ko and Lee [8] introduced the family of conjugations Cλ : H2 → H2, given by

Cλf (z) = f (λz)

with λ ∈ T and proved the following result:

Theorem 1.1. Let ϕ(z) =
∑∞

n=−∞ ϕ̂(n)zn ∈ L∞. Then Tϕ is Cλ-symmetric if,
and only if, ϕ̂(−n) = λnϕ̂(n), for all n ∈ Z.

2 Canonical conjugations

Our first objective in this paper is to study relations between an arbitrary conju-
gation C on H2 and the conjugation J f (z) = f (z). Once the conjugation J is
a kind of canonical conjugation on H2, we observe a close relationship between
conjugations of H2 and conjugation J , namely:

Theorem 2.1. If C is an conjugation on H2, then exists an unitary operator T :
H2 → H2 such that TC = J T.

Proof. Since C is an conjugation, there exists an orthonormal basis {fn}∞n=0 of
H2 such that Cfn = fn. Now, let {zn}∞n=0 the standard orthonormal basis of H2

and the linear isomorphism T : H2 → H2 given by

T

( ∞∑
n=0

anfn

)
=

∞∑
n=0

anz
n.
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Note that Tfn = zn, for all n ≥ 0, and therefore T is unitary. Now, for
f (z) =

∑∞
n=0 anz

n ∈ H2, we get

J f (z) =
∞∑
n=0

anT (fn)

= T

( ∞∑
n=0

anCfn

)
=

(
TCT−1) f (z) ,

whence J T = TC.

The previous theorem says that all complex symmetric Toeplitz operator is uni-
tarily equivalent to a J -symmetric operator. Indeed, we have:

Remark 2.2. Let Tϕ : H2 → H2 an Toeplitz operator. Observe that, if Tϕ is
C-symmetric, since the operator T of previous theorem is unitary, we have

J = TCT ∗,

therefore the operator T2 = TTϕT
∗ is J -symmetric (see [5, p. 1291]). This shows

that Tϕ and T2 are unitarily equivalent operators. Moreover, is obvious that, if T
commutes with J or C, then C = J .

The converse of the Theorem 2.1 is true and your proof is immediate.

Proposition 2.3. If T : H2 → H2 is an unitary operator, then C = T−1J T is an
conjugation on H2.

In short, the Theorem 2.1 and Proposition 2.3 tell us that:

Corollary 2.4. If T : H2 → H2 an linear isomorphism and C = T−1J T , then T
is unitary if, and only if, C is a conjugation on H2.

We already know that every normal operator is complex symmetric and that the
reciprocal in general is not true. However, for Toeplitz operators, by Theorem 1.1
we have that if Tϕ is J -symmetric, then Tϕ is normal. Now note that if Tϕ is
normal not necessarily Tϕ is J -symmetric. In fact, if ϕ(z) = −z + z then Tϕ is
normal, however is not J -symmetric.

Matrix of operators J -symmetric on H2 are quite simple to determine. The
proof of the next result is left to the reader.

Proposition 2.5. Let A ∈ L
(
H2
)
. Then A is J -symmetric if, and only if, the

matrix of A with respect the canonical basis of H2 is symmetric.
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3 Properties of complex symmetry

In the following, we present some properties of complex symmetry in Hilbert
spaces. The first result gives us a way to get complex symmetric operators from
another complex symmetric operator. First, we need some lemmas:

Lemma 3.1. ([6, Lemma 1]) If C and J are conjugations on a Hilbert space H,
then U = CJ is a unitary operator. Moreover, U is both C-symmetric and J-
symmetric.

Lemma 3.2. ([3, Lemma 2.2]) If U : H → H is a unitary and complex symmetric
operator with conjugation C, then UC is a conjugation.

Proposition 3.3. Let T : H → H an operator and C and J conjugations on H.
Then T is C-symmetric if, and only if, UT is UC-symmetric, where U = CJ .

Proof. We already know that U is unitary and C and J-symmetric and that UC =
CJC is a conjugation, by Lemmas 3.1 and 3.2. Now since U∗ = U−1 = JC and
T is C-symmetric, we have

UT (UC) = UTCU∗ = UCT ∗U∗ = UC(UT )∗.

Reciprocally, suppose that UC(UT )∗ = UT (UC). Thus

CT ∗U∗ = C(UT )∗

= U∗UC(UT )∗

= U∗UTUC

= TUC

= TCU∗,

whence CT ∗ = TC.

Lemma 3.4. If T : H → H is both C-symmetric and J-symmetric, then T is both
CJC-symmetric and JCJ-symmetric.

Proof. By Lemma 3.1, we have that U := CJ is unitary and C and J-symmetric.
Hence, by Lemma 3.2, UC = CJC is a conjugation on H. Thus, since CT =
T ∗C and JT = T ∗J we get

(CJC)T = C (TJ)C = T ∗ (CJC) ,

and so T is CJC-symmetric. Analogous, we prove that T is JCJ-symmetric.
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Proposition 3.5. If T : H → H is both C and J-symmetric, then TU is C-
symmetric, where U = CJ .

Proof. In fact, once T is both C-symmetric and J-symmetric, we have by Lemma
3.4 that T is CJC-symmetric and so

(TU)C = T (CJC) = CU∗T ∗ = C (TU)∗ .

Proposition 3.6. An operator T : H → H is C-symmetric if, and only if, J T ∗C =
(CJ )∗T , where J (

∑∞
n=0 αnfn) =

∑∞
n=0 αnfn and {fn}∞n=0 is a orthonormal

basis for H.

Proof. We already know that U = CJ is unitary and both C and J -symmetric.
Now, note that

J T ∗C = (CJ )∗T ⇔ UT ∗C = CU∗T.

First see that if T is C-symmetric, then UT ∗C = U(CT ) = (CU∗)T . Recipro-
cally, we have

CT ∗ = CU∗(UT ∗C)C

= CU∗(CU∗T )C

= (UCCU∗)TC

= TC.

We end this section with two properties of complex symmetry which we leave
the proof to the reader.

Proposition 3.7. Let U : H → H an unitary operator J-symmetric. If T is an
operator such that UT ∗ = TU then:
(i) JT ∗ = T ∗J ⇔ T is UJ−symmetric.
(ii) UJT = TJU∗ ⇔ T is J−symmetric.

4 Complex symmetry of Aluthge and Duggal transforms

Recall that the polar decomposition of an operator T : H → H is uniquely
expressed by T = U |T |, where |T | =

√
T ∗T is a positive operator and U is

a partial isometry such that Ker(U) = Ker |U | and U maps cl(Ran |T |) onto
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cl(Ran(T )). In this case, the Aluthge and Duggal Transforms are given, respec-
tively, by T̃ = |T |

1
2 U |T |

1
2 and T̂ = |T |U .

We already known that the Aluthge transform of a complex symmetric operator
is also complex symmetric (see [4, Theorem 1]). In this section we study relations
between complex symmetry of T and |T | with relation the conjugations C and J ,
as well as the operators T̃ and T̂ .

Proposition 4.1. If T is complex symmetric, then |T | is also complex symmetric.

Proof. If CT = T ∗C, we have by Remark of [4, Lemma 1] that T = CJ |T |,
where J commutes with |T |. Thus, once that CJ is a unitary operator, follows
that

J |T | = C(CJ |T |) = |T |∗ (CJ)∗C = |T |∗ J.

Corollary 4.2. If T is complex symmetric, then |T | is self-adjoint.

Proposition 4.3. Let C and J conjugations on H such that T = CJ |T |. If |T | is
C-symmetric, then T is also C-symmetric.

Proof. First, let’s show that |T | is J-symmetric. In fact, see that

J(JC |T |) = C |T | = |T |∗C = (|T |∗CJ)J,

and so JC |T | is J-symmetric. Thus, by Proposition 3.3, |T | is J-symmetric.
Therefore, it is enough to see that:

CT = C(CJ |T |)
= |T |∗ J
= (|T |∗ JC)C

= (CJ |T |)∗C
= T ∗C.

Corollary 4.4. Let T = CJ |T |. If |T | is C-symmetric, then T̂ = T .

Corollary 4.5. Let T = CJ |T |. Then |T | is C-symmetric if, and only if, T̂ is
J-symmetric.
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Proposition 4.6. Let T = CJ |T |. If C |T | = |T |∗C and CJ = JC, then T is
J-symmetric.

Proof. In fact, we have that

JT = J(CJ |T |)
= C |T |
= |T |∗ JJC
= |T |∗ JCJ

= (CJ |T |)∗J
= T ∗J.
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