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A new finite difference algorithm for boundary
value problems involving transmission conditions
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Abstract. The finite difference method (FDM) is used to find an approximate solution to
ordinary and partial differential equations of various type using finite difference equations
to approximate derivatives. The idea is to replace ordinary or partial derivatives appear-
ing in the boundary-value problem by finite differences that approximate them. There
is an extensive literature on this topic. But, as a rule, ordinary differential equations or
partial differential equations were studied without an internal singular point and without
corresponding transmission conditions .It is our main goal here to develop finite difference
method to deal with an boundary value problem involving additional transmission condi-
tions at the interior singular point.
In this study, we have proposed a new modification of classical FDM for the solution of
boundary value problems which are defined on two disjoint intervals and involved addi-
tional transmission conditions at an common end of these intervals. The proposed modifi-
cation of FDM differs from the classical FDM in calculating the iterative terms of numeri-
cal solutions. To demonstrate the efficiency and reliability of the proposed modification of
FDM an illustrative example is solved b y this method. The obtained results are compared
with those obtained by the standard FDM and by the analytical method. Corresponding
graphical illustrations are also presented.
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1 Introduction

A lot of mechanical and physical processes are modeled by linear or nonlinear
differential equations, whose exact solutions are impossible to find by using ana-
lytical methods. Many researchers have tried to do this in various semi-analytical,
numerical and approximate methods, such as the finite element method, the Ado-
mian decomposition method, the differential transform method, the explicit Eu-
ler method, the Taylor’s expansion method, etc. One of them is the finite differ-
ence method (FDM), which can be applied to wide class of problems appearing in
mathematical physics and engineering. Many important theoretical and numerical
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results have been obtained during the last seven decades regarding the stability,
accuracy and convergence of the FDM for different type initial and/or boundary
value problems (see, [1, 2, 5, 6, 14] and references cited therein).
The standard FDM is intended for solving one-interval initial and/or boundary
value problems without transmission conditions (see, [7, 8, 15, 16]).
Based on FDM, we have developed a new technique for solving two-interval
boundary value problems (BVP), that included additional transmission conditions
across the common endpoint of these intervals. We note that some important the-
oretical aspects of BVP with transmission conditions were studied in [3, 4, 9–13]
and corresponding references cited therein.

2 Analysis of the method

Let us consider a linear boundary-value problem for second order ordinary differ-
ential equation defined on two disjoint intervals, given by

u
′′
+ p(x)u

′
+ q(x)u = f(x), x ∈ [a, c) ∪ (c, b] (1)

together with the boundary conditions (BC’s), given by

u(a) = α, u(b) = β (2)

where p(x), q(x) and f(x) are continuous functions on [a, c) ∪ (c, b] having finite
limit values p(c±0), q(c±0) and f(c±0), respectively, and α, β are real numbers.
To discretize the problem (1)-(2), the definition range [a, b] is divided into N equal
ranges [x0, x1], [x1, x2], ..., [xN−1, xN ], that is

xk = a+ kh, h =
b− a

N
k = 0, 1, 2, ..., N.

By using the Taylor expansion

u(xik + h) ≈ u(xk) + hu
′
(xk) +

h2

2!
u

′′
(xk) + · · · ,

we can express the first derivative in the ordinary differential equation using one
of the following approximate expressions, so-called finite differences

D+u(x) ≈
u(x+ h)− u(x)

h
,

D−u(x) ≈
u(x)− u(x− h)

h
,
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D0u(x) ≈
1
2
(D−u(x) +D+u(x)) ,

where D+u(x), D−u(x) and D0u(x) denotes the forward finite difference, back-
ward finite difference and centered finite difference of the unknown solution u(x),
respectively.
The first and second derivative expressions in the boundary value problem can be
expressed in the same way, as

u′(x) ≈ D+u(x) +D−u(x)

2
=

u(x+ h)− u(x− h)

2h
(3)

and

u′′(x) ≈ D+u(x)−D−u(x)

h
=

u(x+ h)− 2u(x) + u(x− h)

h2 . (4)

Let us define the finite difference solution for u(x) at all grid points x0, x1, · · · , xN
by uk = u(xk). Substituting (3) and (4) in the boundary value problem (1)-(2),
we have the following linear system of algebraic equations(

1 − 1
2hpk

)
uk−1 +

(
−2 + h2qk

)
uk +

(
1 + 1

2hpk
)
uk+1 = h2f (xk)

1 ≤ k ≤ N − 1, k = 1, 2, 3, ..., N − 1,

where

u0 = α, uN = β.

Note that, each equation of this system involves solution values at three nodal
points xk−1 , xk and xk+1. The linear system of algebraic equations can be written
in the matrix and vector form

Mu = B (5)

where M is a tridiagonal matrix of size (N − 1)× (N − 1), given by

M =



−2 + h2q1 1 + 1
2hp1 0 · · · 0 0

1 − 1
2hp2 −2 + h2q2 1 + 1

2hp2 · · · 0 0

...
...

...
. . . · · · · · ·

0 0 1 · · · 1 + 1
2hpN−2 0

0 0 0 · 1 − 1
2hpN−1 −2 + h2qN−1


,



4 S.Çavuşoğlu and O. Sh. Mukhtarov

y =



u1

u2

...
uN−2

uN−1


and B =



h2f (x1)−
(
1 − 1

2hp1
)
α

h2f (x2)

...
h2f (xN−2)

h2f (xN−1)−
(
1 − 1

2hp1
)
β


.

This is the tridiagonal linear system of algebraic equations (5) and therefore can
be solved by using MATLAB/Octave.

2.1 Modification of the FDM for solving transmission problems

Now, consider the BVP (1)-(2) together with additional transmission conditions at
the interior point of singularity x = c, given by

u(c−) = mu(c+), u′(c−) = nu′(c+) (6)

where m,n are real constants. Let the definition range [a, b] is divided into N equal
ranges by the grid points xk = a+ kh, k = 0, 1, ..., N and let the singular point
x = c lies between xt and xt+1 that is x ∈ [xt, xt+1] .
If we apply the transmission conditions (6), then we have two additional algebraic
equations.
Since ut is closest to x = c and lies to the left of x = c, we have identified ut
with u(c−) and similarly yt+1 is closest to x = c and lies to the right of x = c,
we have identified ut+1 with u(c+).
Therefore the transmission condition

u(c−) = mu(c+)

is transformed to the finite difference equation

ut −mut+1 = 0 (7)

and the transmission condition

u′(c−) = nu′(c+).
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is transformed to the finite difference equation

ut−2 − ut − nut+1 + nut+3 = 0. (8)

Note that the equation of this system involves solution values at four nodal points
xt−2 , xt xt+1 and xt+3.
By adding equations (7) and (8) to the system of equations (2), a linear equation
system is obtained, in the matrix and vector form

M̃u = B̃.

This system of equations is not tridiagonal.The solution of this linear system of
algebraic equations can be found by using MATLAB-Octave or Mathematica.

3 Convergence and error estimates of FDM

When the FDM is used to find a numerical solution to differential equations, it is
important to know how accurately the numerical solution approximates the exact
solution.

Definition 3.1 (Global Error). Let Ũ = (u1, u2, . . . , un) denote the finite differ-
ence solution and ũ = (u(x1), u(x2), . . . , u(xn)) is the exact solution at the grid
points x1, x2, . . . , xn. Then the vector

Ẽ = (u1 − u(x1), u2 − u(x2), . . . , un − u(xn)) = Ũ − ũ

is said to be the global error vector.

You usually want to find an admissible upper bound for this error with respect
to the maximum norm , defined by

∥ Ẽ ∥= max
1⩽k⩽n

| uk − u(xk) |

or p-norm (p ≥ 1), defined by

∥ Ẽ ∥p=

(
n∑

k=1

| uxk
− u(k) |p (xk+1 − xk)

)1/2

.

Definition 3.2. Denote
hi := max

1⩽k⩽n
(xk+1 − xk).
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If ∥ Ẽ ∥p converges to zero as h approaches 0 (h → 0), then a finite difference
method is called convergent with respect to the p-norm (p ≥). Moreover, if there
is c ≥ 0 such that

∥ Ẽ ∥p≤ Chq, q > 0,

then FDM is called q-th order accurate.

Definition 3.3. A FDM is called convergent with respect to the maximum norm if

lim
h→0

∥ Ẽ ∥∞= 0.

4 Local truncation errors

We shall show that the FDM solution converges to the exact solution of the BVP
(1)-(2) when h converges to zero. Using formulas (3) and (4), one can show that
the exact solution ũ = (u(x1), u(x2), . . . , u(xn)) satisfies the following linear
system of equation

u(xk+1)− 2u(xk) + u(xk−1)

h2 − h2

12
u(4)(ξk) + pk

u(xk+1)− u(xk−1)

2h

−h2

6
u(3)(ηk) + qku(xk) = f(xk), 1 ⩽ k ⩽ n

for same ξk ∈ [a, b].
On the other hand, the FDM solution Ũ = (u1, u2, . . . , un) satisfies the linear
system of equation

uk+1 − 2uk + uk−1

h2 + pk
uk+1 − uk−1

2h
+ qkuk = fk, 1 ⩽ k ⩽ n.

Subtracting these equation one from the other, we get

Ek+1 − 2Ek +Ek−1

h2 + pk
Ek+1 − Ek−1

2h
+ qkEk = h2fk, 1 ⩽ k ⩽ n, (9)

where Ek is the global error Ek := u(xk)−uk and h2fk is the local truncation
error at the grid point x = xk and

fk =
1
12

u(4)(ξk)−
1
6
u(3)(ηk).
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After multiplying both sides of (9) by h2 and then collecting the corresponding
terms, we have(

1 − h

2
pk

)
Ek−1 +

(
−2 + h2qk

)
Ek +

(
1 +

h

2
pk

)
Ek+1 = h4fk. (10)

We will apply the infinite norm (i.e, maximum norm) ∥ Ẽ ∥∞, because it is used
to measure grid functions and is easily estimated.
The equation (10) can be written as

(2 + h2qk)Ek = (1 − h

2
pk)Ek+1 − (1 +

h

2
pk)Ek + h4fk.

Consequently

| 2 + h2qk || Ek | ≤| 1 − h

2
pk || Ek+1 | + | 1 +

h

2
pk || Ek | +h4 | fk |

≤| 1 − h

2
pk |∥ Ẽ ∥∞ + | 1 +

h

2
pk |∥ Ẽ ∥∞ +h4 ∥ f̃ ∥∞,

where ∥ f̃ ∥∞= max
1⩽k⩽n

| fk | .

From this inequality it follows immediately that

| 2+h2qk |∥ Ẽ ∥∞≤
(
| 1 − h

2
pk | + | 1 +

h

2
pk |
)

∥ Ẽ ∥∞ +h4 ∥ f̃ ∥∞ . (11)

Obviously, one can choose h > 0 small enough to satisfy

| 1 − h

2
pk | + | 1 +

h

2
pk |= 2

and
| 2 + h2qk |= 2 + h2 | qk |

for all k = 1, 2, . . . , n.
Consequently, for sufficiently small h > 0 we have from (11) that

| qk |∥ Ẽ ∥∞≤ h2 ∥ f̃ ∥∞ .

Denoting

C =
∥ f̃ ∥∞

min
1⩽k⩽n

| qk |
,

we obtain

∥ Ẽ ∥∞≤ Ch2.

Hence, the FDM is convergent and 2-order accurate.
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5 Numerical examples

Example 5.1. Consider the following two-interval BVP consisting of the differen-
tial equation

u
′′ − 2 (2x+ 1)u

′
+
(
(2x+ 1)2 − 2

)
u = 0, x ∈ [−1, 0) ∪ (0, 1] , (12)

subject to the boundary conditions at the endpoints x = −1 and x = 1, given by

u (−1) = 0, u (1) = 3, (13)

together with transmission conditions across the common endpoint x = 0, given
by

u(0−) = 2u(0+), u′(0−) = 3u′(0+). (14)

At first we consider the problem (12)-(14) without transmission conditions (14). It
is easy to verify that the function

u =
3
2
ex

2+x−2(x+ 1) (15)

satisfies the equation (12) on whole [−1, 0) ∪ (0, 1] and both boundary conditions
(13). For simplicity we will use the uniform cartesian grid

xk = 1 + kh, k = 0, 1, . . . , 32

for h = 2
32 = 1

16 . In particular we have x0 = 0, x32 = 3.
The central finite difference (CFD) approximation of the derivatives u

′
and u

′′

are defined by

u′(x) ≈ 1
2
(D+u(x) +D−u(x))

and

u′′(x) ≈ 1
h
(D+u(x)−D−u(x)) ,

where D+u(x) and D−u(x) denotes the forward finite difference and backward
finite difference of u(x). By applying the CFD to the differential equation (12)
at a typical grid point x = xk and denoting uk = u(xk), we have the following
finite difference equations

(2 + (4xk + 2)h)uk−1 + (−4 + 2((2xk + 1)2 − 2)h2)uk

+(2 − (4xk + 2)h)uk+1 = 0, k = 1, 2, . . . , 31.

(16)
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That is, we have the linear algebraic system of equations with respect to the vari-
ables u1, u2, . . . , u31. The system of linear algebraic equations (16) can be
written in a tridiagonal matrix-vector form

Mu = b.

The solution of this system can be found by using MATLAB-Octave. The obtained
numerical FDM solutions are graphically compared with the exact solution (15)
(see, Figures 1,2,3 and 4).

Figure 1. The FDM-solution
and exact solution for the
problem (12)-(13) where N=8

Figure 2. The FDM-solution
and exact solution for the
problem (12)-(13) where
N=16

Figure 3. The FDM-solution
and exact solution for the
problem (12)-(13) where
N=32

Figure 4. The FDM-solution
and exact solution for the
problem (12)-(13) where
N=64

Remark. In Figures 1,2,3 and 4, the exact solution (15) is compared with the
numerical FDM solutions for N = 8, 16, 32, 64 respectively. It can be seen from
these graphical illustrations that, the error between the FDM solutions and the
exact solution decreases as the number of grid points N increases.
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Table 1. Maximum absolute error (MAE) for the problem (12)-(13)

N h ∥ E ∥∞ N h ∥ E ∥∞
4 2

4 0.64464 128 2
128 0.00057676

8 2
8 0.17501 256 2

256 0.00014415
16 2

16 0.038225 512 2
512 0.000036035

32 2
32 0.0092668 1024 2

1024 0.0000090086
64 2

64 0.0023117 2048 2
2048 0.0000022521

Example 5.2. Now, we will investigate the boundary value problem (12)-(13) un-
der additional transmission conditions (14). If we select N = 64 and apply the
transmission conditions (14), then we have two additional algebraic equations.

Since u32 is closest to x = 0 and lies to the left of x = 0, we have identified
u32 with u(0−) and similarly u33 is closest to x = 0 and lies to the right of
x = 0, we have identified y33 with y(0+). Therefore, the transmission condition

u(0−) = 2u(0+), u′(0−) = 3u′(0+).

is transformed to the finite difference equation

u32 − 2u33 = 0 (17)

and the transmission condition

u′(0−) = 3u′(0+)

is transformed to the equality

u30 − u32 − 3u33 + 3u35 = 0. (18)

Table 2. Maximum absolute error (MAE) for transmission problem

N h ∥ E ∥∞
8 2

8 1.7634
16 2

16 0.57588
32 2

32 0.23828
64 2

64 0.10978
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Figure 5. The FDM-solution
and exact solution for the
problem (12)-(14) where N=8

Figure 6. The FDM-solution
and exact solution for the
problem (12)-(14) where
N=16

Figure 7. The FDM-solution
and exact solution for the
problem (12)-(14) where
N=32

Figure 8. The FDM-solution
and exact solution for the
problem (12)-(14) where
N=64

Note that the equation of this system involves solution values at four nodal points
x30, x32, x33 and x35.
By adding equations (17), (18) to the system of equations (16), a linear equation
system is obtained in the form

M̃y = B̃.

The solution of this linear system of algebraic equations can be found by using
MATLAB/Octave.
In Figures 5,6,7 and 8, the finite difference solution of the problem (12)-(14) is
graphically compared with the exact solution.
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[4] S. Çavuşoğlu, O. Mukhtarov and H. Olǧar, Finite difference method for approximate
solution of a boundary value problem with interior singular point, Konuralp Journal
of Mathematics 9(1), 40-48 (2021).

[5] D. Kincaid and E. W. Cheney, Numerical Analysis: Mathematics of Scientific Com-
puting, Vol. 2, American Mathematical Soc., 2009.

[6] R. J. LeVeque, Finite Difference Methods for Ordinary and Partial Differential Equa-
tions: Steady-state and Time-dependent Problems, Society for Industrial and Applied
Mathematics, 2007.

[7] T. Lewis, Q. Morris and Y. Zhang, Convergence, stability analysis, and solvers for
approximating sublinear positone and semipositone boundary value problems us-
ing finite difference methods, Journal of Computational and Applied Mathematics
113880 (2021).

[8] P. W. Li, C. M. Fan and J. K. Grabski, A meshless generalized finite difference
method for solving shallow water equations with the flux limiter technique, Engi-
neering Analysis with Boundary Elements 131, 159-173 (2021).

[9] O. S. Mukhtarov and K. Aydemir, Oscillation properties for non-
classical Sturm-Liouville problems with additional transmission con-
ditions, Mathematical Modelling and Analysis 26(3), 432-443 (2021),
https://doi.org/10.3846/mma.2021.13216.

[10] O. S. Mukhtarov and K. Aydemir, Two-linked periodic Sturm–Liouville problems
with transmission conditions, Mathematical Methods in the Applied Sciences 44(18),
14664-14676 (2021).
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