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1 Introduction

In 1951, Steinhaus [29] and Fast [15] introduced the concept of statistical conver-

gence and later in 1959, Schoenberg [28] reintroduced independently. Altın et al.

[3], Bhardwaj and Dhawan [6], Çakallı ([8,9]), Caserta et al. [7], Çınar et al. [10],

Çolak [11], Connor [12], Di Maio and Kočinac [13], Et et al. ([14, 18, 19, 32, 33]),

Fridy [16], Aral and Şengül Kandemir [4], Işık and Akbaş ([2, 20, 21]), Salat [27],

Başar et al. ([5,23]) and many authors investigated some arguments related to this

notion.

A modulus f is a function from [0,∞) to [0,∞) such that

i) f(x) = 0 if and only if x = 0,

ii) f(x+ y) ≤ f(x) + f(y) for x, y ≥ 0,

iii) f is increasing,

iv) f is continuous from the right at 0.

It follows that f must be continuous in everywhere on [0,∞). A modulus may

be unbounded or bounded.

Aizpuru et al. [1] defined f−density of a subset E ⊂ N for any unbounded

modulus f by

df (E) = lim
n→∞

f (|{k ≤ n : k ∈ E}|)

f (n)
, if the limit exists
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and defined f−statistical convergence for any unbounded modulus f by

df ({k ∈ N : |xk − ℓ| ≥ ε}) = 0

and we write it as Sf − limxk = ℓ or xk → ℓ
(

Sf
)

. Every f−statistically con-

vergent sequence is statistically convergent, but a statistically convergent sequence

does not need to be f−statistically convergent for any unbounded modulus f .

A sequence (xk) of points in R (the set of real numbers) is called ρ−statistically

convergent to ℓ, if

lim
n→∞

1

ρn
|{k ≤ n : |xk − ℓ| ≥ ε}| = 0

for each ε > 0, where ρ = (ρn) is a non-decreasing sequence of positive real

numbers tending to ∞ such that lim supn
ρn

n
< ∞ and ∆ρn = O(1), where ∆ρn =

ρn+1 − ρn for each positive integer n. In this case we write Sρ − lim xk = ℓ or

xk → ℓ (Sρ). We denote the set of all ρ−statistically convergent sequences by Sρ.

If ρn = n for each positive integer n, then ρ−statistical convergence is coincided

statistical convergence [8].

The notion of a modulus was given by Nakano [24]. Maddox [22] used a mod-

ulus function to construct some sequence spaces. Afterwards different sequence

spaces defined by modulus have been studied by Gaur and Mursaleen [17], Nuray

and Savas [25], Pehlivan and Fisher [26], Şengül [31] and many others.

2 Main results

In this section we will introduce the concepts of (f, ρ)−statistically convergent

sequences of order α and strongly (f, ρ)−summable sequences of order α of real

numbers, where f is an unbounded modulus and give some inclusion relations

between these concepts.

Definition 2.1. Let f be an unbounded modulus and α be a real number such that

0 < α ≤ 1. We say that the sequence x = (xk) is (f, ρ)−statistically convergent

of order α, if there is a real number ℓ such that

lim
n→∞

1

f (ρn)
α f (|{k ≤ n : |xk − ℓ| ≥ ε}|) = 0,

for each ε > 0, where and afterwards ρ = (ρn) is a non-decreasing sequence of

positive real numbers tending to ∞ such that lim supn
ρn

n
< ∞, ∆ρn = O(1), and

∆ρn = ρn+1 − ρn for each positive integer n. f (ρn)
α

denotes the αth power of
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f (ρn) , that is (f (ρn)
α) = (f (ρ1)

α
, f (ρ2)

α
, ..., f (ρn)

α
, ...). In this case, we

write S
f,α
ρ − limxk = ℓ or xk → ℓ

(

S
f,α
ρ

)

. This space will be denoted by S
f,α
ρ .

In case of ρn = 1, for all n ∈ N, we write Sf,α instead of S
f,α
ρ .

Definition 2.2. Let f be a modulus function and α be a real number such that

0 < α ≤ 1. We say that the sequence x = (xk) is strongly wα [ρ, f, p]−summable

to ℓ (a real number), if there is a real number ℓ such that

lim
n→∞

1

ραn

n
∑

k=1

[f (|xk − ℓ|)]pk = 0,

and is denoted by wα [ρ, f, p]−lim xk = ℓ. The set of all strongly wα [ρ, f, p]−summable

sequences will be denoted by wα [ρ, f, p] . In case of pk = 1, for all k ∈ N, we

write wα [ρ, f ] instead of wα [ρ, f, p] .

Definition 2.3. Let f be an unbounded modulus and α be a real number such that

0 < α ≤ 1. We say that the sequence x = (xk) is strongly w
f,α
ρ (p)−summable

to ℓ (a real number), if there is a real number ℓ such that

lim
n→∞

1

f (ρn)
α

n
∑

k=1

[f (|xk − ℓ|)]pk = 0,

and is written as w
f,α
ρ (p)−lim xk = ℓ. The set of all strongly w

f,α
ρ (p)−summable

sequences will be denoted by w
f,α
ρ (p) . In case of pk = 1, for all k ∈ N, we write

w
f,α
ρ instead of w

f,α
ρ (p) and in case of pk = p for all k ∈ N we write w

f,α
ρ [p]

instead of w
f,α
ρ (p) .

Definition 2.4. Let f be an unbounded modulus and α be a real number such that

0 < α ≤ 1. We say that the sequence x = (xk) is strongly wα
ρ,f (p)−summable

to ℓ (a real number), if there is a real number ℓ such that

lim
n→∞

1

f (ρn)
α

n
∑

k=1

|xk − ℓ|pk = 0,

and is written as wα
ρ,f (p)−lim xk = ℓ. The set of all strongly wα

ρ,f (p)−summable

sequences will be denoted by wα
ρ,f (p) . In case of pk = 1, for all k ∈ N, we write

wα
ρ,f instead of wα

ρ,f (p) and in case of pk = p for all k ∈ N we write wα
ρ,f [p]

instead of wα
ρ,f (p) .



On (f, ρ)−statistical convergence 17

The proof of each of the following results is fairly straightforward, so we choose

to state these results without proof, where we shall assume that the sequence p =
(pk) is bounded and 0 < h = infk pk ≤ pk ≤ supk pk = H < ∞.

Theorem 2.5. Let f be an unbounded modulus. The classes of sequences w
f,α
ρ (p)

and S
f,α
ρ are linear spaces.

Theorem 2.6. The space w
f,α
ρ (p) is paranormed by

g (x) = sup
n

{

1

f (ρn)
α

n
∑

k=1

[f (|xk|)]
pk

}
1
M

where 0 < α ≤ 1 and M = max (1,H) .

Theorem 2.7. Let f be an unbounded modulus, α be a real number such that

0 < α ≤ 1 and pk = 1 for all k ∈ N. If limu→∞
f (u)α

uα
= s > 0 (s ∈ R), then

wα [ρ, f ] ⊂ S
f,α
ρ .

Theorem 2.8. Let α1, α2 be two real numbers such that 0 < α1 ≤ α2 ≤ 1 and f

be an unbounded modulus function, then we have w
f,α1
ρ (p) ⊂ S

f,α2
ρ .

Theorem 2.9. Let α be a fixed real number such that 0 < α ≤ 1. If lim infn
ρn

n
>

1 and limu→∞
f (u)α

uα
= s > 0 (s ∈ R) , then Sf,α ⊂ S

f,α
ρ .

Proof. Suppose first that lim infn
ρn

n
> 1; then there exists a λ > 0 such that

ρn

n
≥ 1 + λ for sufficiently large n, which implies that

ρn

n
≥ 1 + λ =⇒

(ρn

n

)α

≥ (1 + λ)α

If Sf,α − limxk = ℓ, then for every ε > 0 and for sufficiently large n, we have

1

f (n)α
f (|{k ≤ n : |xk − ℓ| ≥ ε}|)

=
f (ρn)

α

f (n)α
1

f (ρn)
α f (|{k ≤ n : |xk − ℓ| ≥ ε}|)

=
f (ρn)

α

ραn

nα

f (n)α
ραn
nα

f (|{k ≤ n : |xk − ℓ| ≥ ε}|)

f (ρn)
α

≥
f (ρn)

α

ραn

nα

f (n)α
(1 + λ)α

f (|{k ≤ n : |xk − ℓ| ≥ ε}|)

f (ρn)
α .
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This proves the sufficiency.

Theorem 2.10. Let f be an unbounded modulus and 0 < α ≤ 1. If (xk) ∈

Sf ∩S
f,α
ρ , then Sf − lim xk = S

f,α
ρ − lim xk such that limn→∞

f (ρn)
α

f (n)
> 0 and

|f (x)− f (y)| = f (|x− y|) , for x ≥ 0, y ≥ 0.

Proof. Suppose Sf − limxk = ℓ1, S
f,α
ρ − lim xk = ℓ2 and ℓ1 6= ℓ2. Let 0 < ε <

|ℓ1−ℓ2|
2

. Then for ε > 0 we have

lim
n→∞

f (|{k ≤ n : |xk − ℓ1| ≥ ε}|)

f (n)
= 0,

and

lim
n→∞

f (|{k ≤ n : |xk − ℓ2| ≥ ε}|)

f (ρn)
α = 0.

On the other hand we can write

f (|{k ≤ n : |ℓ1 − ℓ2| ≥ 2ε}|)

f (n)
≤

f (|{k ≤ n : |xk − ℓ1| ≥ ε}|)

f (n)

+
f (|{k ≤ n : |xk − ℓ2| ≥ ε}|)

f (n)
.

Taking limit as n → ∞ , we get

1 ≤ 0 + lim
n→∞

f (|{k ≤ n : |xk − ℓ2| ≥ ε}|)

f (n)
≤ 1,

and so

lim
n→∞

f (|{k ≤ n : |xk − ℓ2| ≥ ε}|)

f (n)
= 1.

We have

1

f (n)
f (|{k ≤ n : |xk − ℓ2| ≥ ε}|)

=
1

f (n)
f (ρn)

α 1

f (ρn)
α f (|{k ≤ n : |xk − ℓ2| ≥ ε}|)

so
1

f (n)
f (|{k ≤ n : |xk − ℓ2| ≥ ε}|) → 0,
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but this is a contradiction to

lim
n→∞

f (|{k ≤ n : |xk − ℓ2| ≥ ε}|)

f (n)
= 1.

As a result, ℓ1 = ℓ2.

Now as a result of Theorem 2.10 we have the following Corollary 2.11.

Corollary 2.11. Let ρ = (ρn) and ρ′ = (ρ′n) be two sequences as defined above

and 0 < α ≤ 1. If (xk) ∈ Sf∩
(

S
f,α
ρ ∩ S

f,α

ρ
′

)

, then S
f,α
ρ −lim xk = S

f,α

ρ
′ −lim xk.

Theorem 2.12. Let f be an unbounded modulus. If lim pk > 0, then w
f,α
ρ (p) −

lim xk = ℓ uniquely.

Proof. Let lim pk = s > 0. Assume that w
f,α
ρ (p) − limxk = ℓ1 and w

f,α
ρ (p) −

lim xk = ℓ2. Then

lim
n

1

f (ρn)
α

n
∑

k=1

[f (|xk − ℓ1|)]
pk = 0,

and

lim
n

1

f (ρn)
α

n
∑

k=1

[f (|xk − ℓ2|)]
pk = 0.

By definition of f, we have

1

f (ρn)
α

n
∑

k=1

[f (|ℓ1 − ℓ2|)]
pk

≤
D

f (ρn)
α

(

n
∑

k=1

[f (|xk − ℓ1|)]
pk +

n
∑

k=1

[f (|xk − ℓ2|)]
pk

)

=
D

f (ρn)
α

n
∑

k=1

[f (|xk − ℓ1|)]
pk +

D

f (ρn)
α

n
∑

k=1

[f (|xk − ℓ2|)]
pk

where supk pk = H and D = max
(

1, 2H−1
)

. Hence

lim
n

1

f (ρn)
α

n
∑

k=1

[f (|ℓ1 − ℓ2|)]
pk = 0.

Since limk→∞ pk = s we have ℓ1 − ℓ2 = 0. Thus the limit is unique.
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Theorem 2.13. Let ρ = (ρn) and ρ′ = (ρ′n) be two sequences as defined above

such that ρn ≤ ρ′n for all n ∈ N and α1, α2 two real numbers such that 0 < α1 ≤
α2 ≤ 1. If

lim
n→∞

inf
f (ρn)

α1

f (ρ′n)
α2

> 0 (1)

then w
f,α2

ρ
′ (p) ⊂ w

f,α1
ρ (p) .

Proof. Let x ∈ w
f,α2

ρ
′ (p) . We can write

1

f (ρ′n)
α2

n
∑

k=1

[f (|xk − ℓ|)]pk ≥
f (ρn)

α1

f (ρ′n)
α2

1

f (ρn)
α1

n
∑

k=1

[f (|xk − ℓ|)]pk .

Thus if x ∈ w
f,α2

ρ
′ (p) , then x ∈ w

f,α1
ρ (p) .

From Theorem 2.13 we have the following results.

Corollary 2.14. Let ρ = (ρn) and ρ′ = (ρ′n) be two sequences as defined above

such that ρn ≤ ρ′n for all n ∈ N and α1, α2 two real numbers such that 0 < α1 ≤
α2 ≤ 1. If (1) holds then

(i) wf,α

ρ
′ (p) ⊂ w

f,α
ρ (p) , if α1 = α2 = α,

(ii) wf

ρ
′ (p) ⊂ w

f,α1
ρ (p) , if α2 = 1,

(iii) wf

ρ
′ (p) ⊂ w

f
ρ (p) , if α1 = α2 = 1.
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[2] K. E. Akbaş and M. Işık, On asymptotically λ−statistical equivalent sequences of

order α in probability, Filomat 34(13) (2020) 4359–4365.



On (f, ρ)−statistical convergence 21
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E-mail: mikailet68@gmail.com

Hüseyin Çakallı, Mathematics Division, Graduate School of Science and Engineering,

Maltepe University, Maltepe, Istanbul, Turkey.

E-mail: huseyincakalli@maltepe.edu.tr

mailto:mikailet68@gmail.com
mailto:huseyincakalli@maltepe.edu.tr

