On ρ -statistical convergence of order α of sequences of function

Nazlım Deniz Aral, Hacer Şengül Kandemir and Mikail Et

Communicated by Feyzi Basar

Abstract. In this study, by using definition of ρ -statistical convergence which was defined by Çakallı [5], we introduce the concepts of pointwise $w^{\alpha}_{\rho}(f)$ -summability, pointwise ρ -statistical convergence of order α and uniform ρ -statistical convergence of order α sequences of real-valued functions. Also, we give some inclusion relations between these concepts.

Keywords. Statistical convergence, sequences of function, Cesàro summability.

2010 Mathematics Subject Classification. 40A05, 40C05, 46A45.

1 Introduction

In 1951, Steinhaus [32] and Fast [14] introduced the notion of statistical convergence and later in 1959, Schoenberg [27] reintroduced independently. Çakallı ([3–5]), Caserta et al. [6], Çolak [8], Connor [9], Et et al.[11], Fridy [16], Işık and Akbaş ([19–21]), Kolk [22], Mursaleen [23], Salat [26], Sakaoğlu Özgüç and Yurdakadim [25], Şengül et al. ([28–31]) and many others investigated some arguments related to this notion. The reader can refer to the monographs [15] and [24] on some new approaches and developments related to summability theory and its applications. Gökhan et al. ([17, 18]) introduced the definition of pointwise and uniform statistical convergence of sequences of real valued functions and Duman and Orhan [10] studied independently. Then, Çınar et al. [7] defined pointwise and uniform statistical convergence of order α for sequences of functions and pointwise λ and lacunary statistical convergence of order α for sequences of functions was introduced by Et et al. ([12, 13]).

Çolak [8] defined the α -density of a subset K of \mathbb{N} as follows:

$$\delta_{\alpha}(K) = \lim_{n \to \infty} \frac{1}{n^{\alpha}} \left| \left\{ k \le n : k \in K \right\} \right|$$

provided the limit exists, $\delta_{\alpha}(K)$ is said to be the α -density of a subset K, where α be a real number such that $0 < \alpha \leq 1$.

If $x = (x_k)$ is a sequence such that x_k satisfies property P(k) for all k except a set of α -density zero, then we say that x_k satisfies P(k) for "almost all k according to α " and we denote this by "a.a.k (α)".

A sequence $x = (x_k)$ is said to be strong ρ -convergent to ℓ if

$$\lim_{n \to \infty} \frac{1}{\rho_n} \sum_{k=1}^n |x_k - \ell| = 0,$$

holds [1].

A sequence $x = (x_k)$ is called ρ -statistically convergent to ℓ if

$$\lim_{n \to \infty} \frac{1}{\rho_n} |\{k \le n : |x_k - \ell| \ge \varepsilon\}| = 0$$

for each $\varepsilon > 0$. We assume throughout here and after that $\rho = (\rho_n)$ is a nondecreasing sequence of positive real numbers tending to ∞ such that $\limsup_n \frac{\rho_n}{n} < \infty$, $\Delta \rho_n = O(1)$, and $\Delta \rho_n = \rho_{n+1} - \rho_n$ for each positive integer *n*. If $\rho = (\rho_n) = n$, then ρ -statistically convergence reduces to statistical convergence [5].

The ρ -density of order α of a set $K \subset \mathbb{N}$ is defined by

$$\delta^{\alpha}_{\rho}(K) = \lim_{n \to \infty} \frac{1}{\rho^{\alpha}_n} \left| \left\{ k \le n : k \in K \right\} \right|$$

provided this limit exists.

2 Main results

In this section we give the main results of this article.

Definition 2.1. Let $0 < \alpha \leq 1$. A sequence of functions $\{f_k\}$ is said to be strongly pointwise ρ -summable of order α (or pointwise $w_{\rho}^{\alpha}(f)$ -summable), if there is a function f such that

$$\lim_{n \to \infty} \frac{1}{\rho_n^{\alpha}} \sum_{k=1, x \in E}^n |f_k(x) - f(x)| = 0.$$

In this case we write $w_{\rho}^{\alpha}(f) - \lim f_k(x) = f(x)$ on E.

If we consider $\alpha = 1$ and $\rho_n = n$ for all $n \in \mathbb{N}$, then the strongly pointwise ρ -summable of order α reduces to the strong Cesàro summability. We denote the set of all strongly pointwise ρ -summable of order α sequence of functions by $w_{\rho}^{\alpha}(f)$.

Definition 2.2. Let $0 < \alpha \leq 1$. A sequence of functions $\{f_k\}$ is called pointwise ρ -statistically convergent of order α (or pointwise $S^{\alpha}_{\rho}(f)$ -statistical convergence) to the function f on a set E, if for every $\varepsilon > 0$,

$$\lim_{n \to \infty} \frac{1}{\rho_n^{\alpha}} \left| \{ k \le n : |f_k(x) - f(x)| \ge \varepsilon, \quad \text{for every } \mathbf{x} \in \mathbf{E} \} \right| = 0$$

i.e., for every $x \in E$,

$$|f_k(x) - f(x)| < \varepsilon, \quad a.a.k(\alpha)$$

It is denoted by $S^{\alpha}_{\rho}(f) - \lim f_k(x) = f(x)$ on E. $S^{\alpha}_{\rho}(f) - \lim f_k(x) = f(x)$ means that for every $\delta > 0$ there is an integer M such that

$$\frac{1}{\rho_n^{\alpha}} \left| \{k \le n : |f_k(x) - f(x)| \ge \varepsilon, \quad \text{for every } \mathbf{x} \in \mathbf{E} \} \right| < \delta$$

for all $n > M (= M(\varepsilon, \delta, x))$ and for each $\varepsilon > 0$. The set of all pointwise ρ -statistically convergent sequences of function of order α is denoted by $S_{\rho}^{\alpha}(f)$.

The ρ -statistical convergence of order α for a sequence of functions is well defined for $0 < \alpha \leq 1$, but it is not well defined for $\alpha > 1$. Let $\{f_k\}$ be defined as follows and $\rho_n = n + 1$

$$f_k(x) = \begin{cases} 1, & \text{if } k = 2n \\ x^k, & \text{if } k \neq 2n \end{cases}$$

 $n = 1, 2, 3, \dots$ and $x \in [0, 1/2]$. Both

$$\lim_{n \to \infty} \frac{1}{(n+1)^{\alpha}} \left| \{k \le n : |f_k(x) - 1| \ge \varepsilon, \quad \text{for every } \mathbf{x} \in \mathbf{E} \} \right| = \lim_{n \to \infty} \frac{n}{2(n+1)^{\alpha}} = 0$$

and

 $\lim_{n \to \infty} \frac{1}{(n+1)^{\alpha}} \left| \{k \le n : |f_k(x) - 0| \ge \varepsilon, \quad \text{for every } \mathbf{x} \in \mathbf{E} \} \right| = \lim_{n \to \infty} \frac{n}{2(n+1)^{\alpha}} = 0$ for $\alpha > 1$. So $S_{\rho}^{\alpha}(f) - \lim f_k(x) = 1$ and $S_{\rho}^{\alpha}(f) - \lim f_k(x) = 0$, but this is

impossible.

Definition 2.3. Let $0 < \alpha \leq 1$. A sequence of functions $\{f_k\}$ is called uniformly $S^u_{\rho}(f)$ -statistically convergent of order α (or uniformly ρ -statistical convergence) to the function f on a set E, if for every $\varepsilon > 0$,

$$\lim_{n \to \infty} \frac{1}{\rho_n^{\alpha}} \left| \{ k \le n : |f_k(x) - f(x)| \ge \varepsilon, \quad \text{for all } \mathbf{x} \in \mathbf{E} \} \right| = 0$$

i.e., for all $x \in E$,

 $|f_k(x) - f(x)| < \varepsilon, \quad a.a.k(\alpha).$

It is denoted by $S^{u}_{\rho}(f) - \lim f_{k}(x) = f(x)$ uniformly on E or $S^{u,\alpha}_{\rho}(f) - \lim f_{k}(x) = f(x)$ on E. The set of all uniformly ρ -statistically convergent sequences of function of order α is denoted by $S^{u,\alpha}_{\rho}(f)$.

Theorem 2.4. Let $0 < \alpha \leq 1$ and $c \in \mathbb{R}$. If $S^{\alpha}_{\rho}(f) - \lim f_k(x) = f(x)$ and $S^{\alpha}_{\rho}(f) - \lim g_k(x) = g(x)$, then, the following statements hold: (i) $S^{\alpha}_{\rho}(f) - \lim cf_k(x) = cf(x)$, (ii) $S^{\alpha}_{\rho}(f) - \lim (f_k(x) + g_k(x)) = f(x) + g(x)$.

Proof. The proof of the theorem is obtained by using techniques C_{10} , Karakaş and Et ([7], Theorem 3.2).

It is easy to see that every convergent sequence of functions is statistically convergent of order $\alpha(0 < \alpha \leq 1)$, but the converse does not hold. For example the sequence $\{f_k\}$ defined by

$$f_k(x) = \begin{cases} 1, & \text{if } k = n^2 \\ \frac{kx}{2+k^2x^2}, & \text{if } k \neq n^2 \end{cases}$$

is statistically convergent of order α with $S^{\alpha} - \lim f_k(x) = 0$ for $\alpha > \frac{1}{2}$, but it is not convergent.

Theorem 2.5. Let $0 < \alpha \leq 1$. If for each $x \in E$, $S^{\alpha}_{\rho}(f) - \lim f_k(x) = f(x)$ and $S^{\alpha}_{\rho}(f) - \lim f_k(x) = g(x)$, then f(x) = g(x).

Proof. Using the definition of pointwise ρ -statistically convergent of order α and classical techniques, we have the proof of theorem.

Theorem 2.6. Let $0 < \alpha \leq 1$. If $\{g_k\}$ is a convergent sequence of functions such that $f_k = g_k$, a.a.k (α), then $\{f_k\}$ is pointwise ρ -statistically convergent of order α .

Proof. Suppose that for each $x \in E$

$$\frac{1}{\rho_n^{\alpha}} |\{k \le n : f_k(x) \ne g_k(x)\}| = 0 \quad \text{and} \quad \lim_{k \to \infty} g_k(x) = f(x),$$

then for every $\varepsilon > 0$,

$$\{k \le n : |f_k(x) - f(x)| \ge \varepsilon, \text{ for every } \mathbf{x} \in \mathbf{E}\}$$

 $\subseteq \{k \le n : |g_k(x) - f(x)| \ge \varepsilon, \quad \text{for every } \mathbf{x} \in \mathbf{E}\} \cup \{k \le n : f_k(x) \ne g_k(x)\}.$ Therefore,

$$\frac{1}{\rho_n^{\alpha}} |\{k \le n : |f_k(x) - f(x)| \ge \varepsilon, \quad \text{for every } \mathbf{x} \in \mathbf{E}\}|$$
(1)

 $\leq \frac{1}{\rho_n^{\alpha}} \left| \{k \leq n : |g_k(x) - f(x)| \geq \varepsilon, \quad \text{for every } \mathbf{x} \in \mathbf{E} \} \right| + \frac{1}{\rho_n^{\alpha}} \left| \{k \leq n : f_k(x) \neq g_k(x) \} \right|.$ Since $\lim_{k \to \infty} g_k(x) = f(x)$ for each $x \in E$, the set

 $\{k \le n : |q_k(x) - f(x)| \ge \varepsilon$, for every $x \in E\}$

contains finite number of integers and so

$$\frac{1}{\rho_n^{\alpha}} |\{k \le n : |g_k(x) - f(x)| \ge \varepsilon, \quad \text{for every } \mathbf{x} \in \mathbf{E}\}| = 0.$$

Using inequality (1) we get for every $\varepsilon > 0$

$$\frac{1}{\rho_n^{\alpha}} |\{k \le n : |f_k(x) - f(x)| \ge \varepsilon, \quad \text{for every } \mathbf{x} \in \mathbf{E}\}| = 0.$$

Theorem 2.7. Let $0 < \alpha \leq 1$. If $S^{\alpha}_{\rho}(f) - \lim f_k(x) = f(x)$, then $\{f_k\}$ has a subsequence of function $\{f_{k_i}\}$ such that

$$\lim_{i \to \infty} f_{k_i}(x) = f(x)$$

on E.

Proof. Proof of theorem is as an immediate consequence of Theorem 2.5.

Theorem 2.8. Let $0 < \alpha \leq \beta \leq 1$. Then $S^{\alpha}_{\rho}(f) \subseteq S^{\beta}_{\rho}(f)$ and this inclusion is strict for some α and β such that $\alpha < \beta$.

Proof. The proof is similar to that of Theorem 3.6 in [7]. Therefore we omit it.

Corollary 2.9. Let $0 < \alpha \leq 1$. If a sequence of functions $\{f_k\}$ is pointwise ρ -statistically convergent of order α , to the function f, then it is pointwise ρ -statistically convergent to the function f.

Theorem 2.10. Let $0 < \alpha \leq 1$. If $\rho_n \ge n$ for all $n \in \mathbb{N}$, then $S^{\alpha}(f) \subset S^{\alpha}_{\rho}(f)$.

Proof. If $S^{\alpha} - \lim f_k(x) = f(x)$ on E, then for every $\varepsilon > 0$ we have

$$\begin{aligned} \frac{1}{n^{\alpha}} \left| \{k \le n : |f_k(x) - f(x)| \ge \varepsilon \quad \text{for every } \mathbf{x} \in \mathbf{E} \} \right| \\ &= \frac{\rho_n^{\alpha}}{n^{\alpha}} \frac{1}{\rho_n^{\alpha}} \left| \{k \le n : |f_k(x) - f(x)| \ge \varepsilon \quad \text{for every } \mathbf{x} \in \mathbf{E} \} \right| \\ &\geqslant \frac{1}{\rho_n^{\alpha}} \left| \{k \le n : |f_k(x) - f(x)| \ge \varepsilon \quad \text{for every } \mathbf{x} \in \mathbf{E} \} \right|. \end{aligned}$$

This completes the proof of the theorem.

Theorem 2.11. Let $\alpha \in (0, 1]$ be any real number. A sequence of functions $\{f_k\}$ is pointwise ρ -statistically convergent of order α , to the function f if and only if there exists a subset $K = \{k\} \subseteq \mathbb{N}$, for each fixed $x \in E$, $\delta_{\rho}^{\alpha}(K) = 1$ and $\lim_{k\to\infty} f_k(x) = f(x)$ for each fixed $x \in E$.

Proof. Let
$$S^{\alpha}_{\rho}(f) - \lim f_k(x) = f(x)$$
. For $r = 1, 2, ...$ put

$$K_r = \{k \in \mathbb{N} : |f_k(x) - f(x)| \ge \frac{1}{r}\}$$

and

$$K_r^* = \{k \in \mathbb{N} : |f_k(x) - f(x)| < \frac{1}{r}\}$$

for each fixed $x \in E$. Then, $\delta_{\rho}(K_r) = 0$ and

$$K_1^* \supset K_2^* \supset \dots \supset K_i^* \supset K_{i+1}^* \supset \dots$$
(2)

and

$$\delta^{\alpha}_{\rho}(K^*_r) = 1, \tag{3}$$

 $r = 1, 2, \dots$ for each fixed $x \in E$.

Now, we have to show that for $k \in K_r^*$, $\{f_k\}$ is convergent to f. Suppose that $\{f_k\}$ is not convergent to f. Therefore, there is $\varepsilon > 0$ such that

$$|f_k(x) - f(x)| \ge \varepsilon$$

for infinitely many terms and some $x \in E$. Let

$$K_{\varepsilon}^* = \{k \in \mathbb{N} : |f_k(x) - f(x)| < \varepsilon\}$$

and $\varepsilon > \frac{1}{r}$, (r = 1, 2, ...). Then, $\delta_{\rho}^{\alpha}(K_{\varepsilon}^*) = 0$ and by (2) $K_r^* \subset (K_{\varepsilon}^*)$. Hence, $\delta_{\rho}^{\alpha}(K_r^*) = 0$ which contradicts (3). Therefore, $\{f_k\}$ is convergent to f.

Conversely, suppose that there exists a subset $K = \{k\} \subset \mathbb{N}$ for each fixed $x \in E$ such that $\delta_{\rho}^{\alpha}(K) = 1$ and $\lim_{k \to \infty} f_k(x) = f(x)$, i.e., there exist an $N(x, \varepsilon)$ such that for each fixed $x \in E$ and each $\varepsilon > 0$, $k \ge N$ implies $|f_k(x) - f(x)| < \varepsilon$. Now,

$$K_{\varepsilon} = \{k \in \mathbb{N} : |f_k(x) - f(x)| \ge \varepsilon\} \subseteq \mathbb{N} - \{k_{N+1}, k_{N+2}, \ldots\}$$

for each fixed $x \in E$. Therefore, $\delta_{\rho}^{\alpha}(K_{\varepsilon}) \leq 1 - 1 = 0$ for each fixed $x \in E$. Hence, $\{f_k\}$ is pointwise statistically convergent of order α to f.

Theorem 2.12. Let $0 < \alpha \leq 1$. Let f and $\{f_k\}$ for all k = 1, 2, ... be continuous functions on $E = [a, b] \subset \mathbb{R}$. Then, $S_{\rho}^{u,\alpha}(f) - \lim f_k(x) = f(x)$ on A if and only if $c_k \to 0$ (S_{ρ}^{α}) , where $c_k = \max_{x \in E} |f_k(x) - f(x)|$.

Proof. Assume that $\{f_k\}$, ρ -uniformly statistically convergent of order α to f on E. Since f and $\{f_k\}$ are continuous functions on E, so $|f_k(x) - f(x)|$ is continuous on E, for each $k \in \mathbb{N}$. It has absolute maximum value at some point $x_k \in E$, i.e., there exists $x_1, x_2, \ldots \in E$ such that $c_1 = |f_1(x_1) - f(x_1)|, c_2 = |f_2(x_2) - f(x_2)|, \ldots$, etc. Hence, we may write $c_k = |f_k(x_k) - f(x_k)|, k = 1, 2, \ldots$ From the definition of uniform ρ -statistical convergence of order α , we have, for every $\varepsilon > 0$,

$$|f_k(x) - f(x)| < \varepsilon \quad a.a.k(\alpha).$$

Thus, $c_k \to 0 \left(S_{\rho}^{\alpha} \right)$.

Now, we suppose that $c_k \to 0$ (S_{ρ}^{α}) . We let following set

$$B(\varepsilon) = \{k \le n : \max_{x \in E} |f_k(x) - f(x)| \ge \varepsilon\},\$$

for $\varepsilon > 0$. Then, by hypothesis we have $\delta(B(\varepsilon)) = 0$. Since for $\varepsilon > 0$

$$\max_{x \in E} |f_k(x) - f(x)| \ge |f_k(x) - f(x)| \ge \varepsilon$$

we have

$$\{k \le n : |f_k(x) - f(x)| \ge \varepsilon, \text{ for all } \mathbf{x} \in \mathbf{E}\} \subseteq B(\varepsilon)$$

and so

$$\frac{1}{\rho_n^{\alpha}} |\{k \le n : |f_k(x) - f(x)| \ge \varepsilon, \quad \text{for all } \mathbf{x} \in \mathbf{E}\}| = 0.$$

This completes the proof.

Theorem 2.13. Let $0 < \alpha \leq \beta \leq 1$. Then, $w_{\rho}^{\alpha}(f) \subseteq w_{\rho}^{\beta}(f)$.

Proof. The proof is clear. To show that the inclusion is strict for some α and β such that $\alpha < \beta$, we define the sequence $\{f_k\}$ by

$$f_k(x) = \begin{cases} \frac{kx}{1+kx}, & \text{if } k = n^2 \\ 0, & \text{if } k \neq n^2, \end{cases} \quad x \in [1,2]$$

and consider $\rho_n = n$. Then,

$$\frac{1}{\rho_n^{\alpha}} \sum_{k=1, x \in A}^n |f_k(x) - f(x)| \leq \frac{\sqrt{n}}{n^{\beta}}$$

since $1/(n^{\beta-\frac{1}{2}}) \to 0$ as $n \to \infty$, then $w_{\rho}^{\beta}(f) - \lim f_k(x) = 0$, i.e., the sequence $\{f_k\}$ is strongly pointwise ρ -summable of order α for $\frac{1}{2} < \beta \leq 1$, but since

$$\frac{\sqrt{n}}{2n^{\alpha}} \leqslant \frac{1}{\rho_n^{\alpha}} \sum_{k=1,x \in A}^n |f_k(x) - f(x)|$$

and $\sqrt{n}/2n^{\alpha} \to \infty$, $n \to \infty$, the sequence $\{f_k\}$ is not strongly pointwise ρ -summable of order α for $0 < \alpha < \frac{1}{2}$.

Corollary 2.14. Let $0 < \alpha \leq \beta \leq 1$. Then, the following statements hold: (i) if $\alpha = \beta$, then $w_{\rho}^{\alpha}(f) = w_{\rho}^{\beta}(f)$; (ii) $w_{\rho}^{\alpha}(f) \subseteq w_{\rho}(f)$ for each $\alpha \in (0, 1]$.

Theorem 2.15. Let $0 < \alpha \leq 1$. If a sequence of functions $\{f_k\}$ is pointwise $w_{\rho}^{\alpha}(f)$ –summable to the function f, then it is pointwise ρ -statistical convergent of order α to the function f.

Proof. The proof is similar to that of Theorem 3.12 in [7]. Therefore we omit it. \Box

Definition 2.16. Let $0 < \alpha \leq 1$. A sequence of functions $\{f_k\}$ is said to be pointwise ρ -statistically Cauchy sequence of order α provided that for every $\varepsilon > 0$, there exist a number $N = N(\varepsilon, x)$ such that

$$\frac{1}{\rho_n^{\alpha}} |\{k \le n : |f_k(x) - f_N(x)| \ge \varepsilon, \quad \text{for every } \mathbf{x} \in \mathbf{E}\}| = 0.$$

Theorem 2.17. Let $0 < \alpha \leq 1$ and let $\{f_k\}$ be a pointwise ρ -statistically Cauchy sequence of order α of sequence of functions. Then there exists a pointwise convergent sequence of functions $\{g_k\}$ such that $f_k = g_k$ for a.a.k (α).

Proof. The proof is similar to that of Theorem 3.4 in [7]. Therefore we omit it.

Theorem 2.18. Let $0 < \alpha \leq 1$. The sequence $\{f_k\}$ is pointwise ρ -statistically convergent of order α if and only if $\{f_k\}$ is a pointwise ρ -statistically Cauchy sequence of order α .

Proof. The first part of the proof is easy. Now we assume that $\{f_k\}$ is a pointwise ρ -statistically Cauchy sequence of order α of functions. By Theorem 2.17 there exists a pointwise convergent sequence $\{g_k\}$ such that $f_k = g_k$ for a.a.k (α). By Theorem 2.12 we have $S^{\alpha}_{\rho}(f) - \lim f_k(x) = f(x)$ for each $x \in E$.

Acknowledgments. The authors acknowledge that some of the results were presented at the 5th International Conference of Mathematical Sciences, 23-27 June 2021 (ICMS 2021) Maltepe University, Istanbul, Turkey.

Bibliography

- N. D. Aral, H. Şengül Kandemir and M. Et, On ρ-statistical convergence, International Conference of Mathematical Sciences, (ICMS 2020), Maltepe University, Istanbul, Turkey.
- [2] N. D. Aral and M. Et, Generalized difference sequence spaces of fractional order defined by Orlicz Functions, *Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat.* 69(1) (2020), 941–951.
- [3] H. Çakallı, Lacunary statistical convergence in topological groups, *Indian J. Pure Appl. Math.*, 26(2) (1995), 113–119.
- [4] H. Çakallı, A study on statistical convergence, Funct. Anal. Approx. Comput. 1(2) (2009), 19–24.
- [5] H. Çakallı, A variation on statistical ward continuity, *Bull. Malays. Math. Sci. Soc.* 40 (2017), 1701–1710.
- [6] A. Caserta, Di M. Giuseppe and L. D. R. Kočinac, Statistical convergence in function spaces, *Abstr. Appl. Anal.* 2011 (2011), Art. ID 420419, 11 pp.
- [7] M. Çınar, M. Karakaş and M. Et, On pointwise and uniform statistical convergence of order α for sequences of functions, *Fixed Point Theory Appl.* 2013 (2013), Article Number:33, 11 pp.

- [8] R. Çolak, Statistical convergence of order α, Modern Methods in Analysis and Its Applications, New Delhi, India: Anamaya Pub, 2010, 121–129.
- [9] J. S. Connor, The statistical and strong *p*-Cesàro convergence of sequences, *Analysis* 8 (1988), 47–63.
- [10] O. Duman and C. Orhan, μ-statistically convergent function sequences, *Czechoslo-vak Math. J.* 54 (2004), 413–422.
- [11] M. Et, R. Çolak and Y. Altın, Strongly almost summable sequences of order α , *Kuwait J. Sci.* **41(2)** (2014), 35–47.
- [12] M. Et, M. Çınar and M. Karakaş, On λ -statistical convergence of order α of sequences of function, *J. Inequal. Appl.* 2013, 2013:204, 8 pp.
- [13] M. Et and H. Şengül, On pointwise Lacunary Statistical Convergence of α of Sequences of Function, *Proc. Natl. Acad. Sci. India Sect. A Phys. Sci.* **85**(2) (2015), 253–258.
- [14] H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), 241–244.
- [15] F. Başar, *Summability Theory and Its Applications*, 2nd ed., CRC Press, Taylor&Francis Group, Boca Raton, London, New York, 2022.
- [16] J. Fridy, On statistical convergence, Analysis 5 (1985), 301–313.
- [17] A. Gökhan and M. Güngör, On pointwise statistical convergence, *Indian J. Pure Appl. Math.* **33(9)** (2002), 1379–1384.
- [18] M. Güngör and A. Gökhan, On uniform statistical convergence, Int. J. Pure Appl. Math. 19(1) (2005), 17–24.
- [19] M. Işık and K. E. Akbaş, On λ -statistical convergence of order α in probability, J. *Inequal. Spec. Funct.* 8(4) (2017), 57–64.
- [20] K. E. Akbaş and M. Işık, On asymptotically λ -statistical equivalent sequences of order α in probability, *Filomat* **34(13)** (2020), 4359–4365.
- [21] M. Işık and K. E. Akbaş, On Asymptotically Lacunary Statistical Equivalent Sequences of Order α in Probability, *ITM Web of Conferences* **13**, 01024 (2017), DOI: 10.1051/itmconf/20171301024.
- [22] E. Kolk, The statistical convergence in Banach spaces, Acta Comment. Univ. Tartu. Math. 928 (1991), 41–52.
- [23] M. Mursaleen, λ -statistical convergence, *Math. Slovaca* **50**(1) (2000), 111–115.
- [24] M. Mursaleen and F. Başar, Sequence Spaces: Topics in Modern Summability Theory, CRC Press, Taylor&Francis Group, Series: Mathematics and Its Applications, Boca Raton, London, New York, 2020.
- [25] I. Sakaoğlu Ozgüç and T. Yurdakadim, On quasi-statistical convergence, *Commun. Fac. Sci. Univ. Ank. Sér. A1 Math. Stat.* 61(1) (2012), 11–17.

- [26] T. Šalát, On statistically convergent sequences of real numbers, *Math. Slovaca* 30 (1980), 139–150.
- [27] I. J. Schoenberg, The integrability of certain functions and related summability methods, *Amer. Math. Monthly* **66** (1959), 361–375.
- [28] H. Şengül and M. Et, On (λ, I)- Statistical Convergence of α of Sequences of Function, Proc. Natl. Acad. Sci. India Sect. A Phys. Sci. 88(2) (2018), 181–186.
- [29] H. Şengül, On $S^{\beta}_{\alpha}(\theta)$ -convergence and $N^{\beta}_{\alpha}(\theta, p)$ -summability, J. Nonlinear Sci. Appl. **10(9)** (2017), 5108–5115.
- [30] H. Şengül, Some Cesàro-type summability spaces defined by a modulus function of order (α, β), Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 66(2) (2017), 80–90.
- [31] H. Şengül and M. Et, On *I*-lacunary statistical convergence of order α of sequences of sets, *Filomat* **31(8)** (2017), 2403–2412.
- [32] H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, *Colloq. Math.* 2 (1951), 73–74.

Received January 17, 2022; revised July 19, 2022; accepted November 19, 2022.

Author information

Nazlım Deniz Aral, Department of Mathematics, Bitlis Eren University, Bitlis, 13000, Turkey. E-mail: ndaral@beu.edu.tr

Hacer Şengül Kandemir, Faculty of Education, Harran University, Osmanbey Campus 63190, Şanlıurfa, Turkey. E-mail: hacer.sengul@hotmail.com

Mikail Et, Department of Mathematics, Fırat University, 23119 Elazığ, Turkkey. E-mail: mikailet680gmail.com